
Serializable Snapshot Isolation
Making ISOLATION LEVEL SERIALIZABLE

Provide Serializable Isolation

Dan Ports
MIT

Kevin Grittner
Wisconsin Court System

1Saturday, May 21, 2011

Overview
Serializable isolation makes it easier to reason
about concurrent transactions

In 9.0 and before, SERIALIZABLE was really
snapshot isolation – allows anomalies

in 9.1: Serializable Snapshot Isolation (SSI)

• a new way to ensure true serializability
(first implementation in a production DBMS!)

2Saturday, May 21, 2011

Agenda
• What is serializability? Why do we want it?

• Snapshot isolation vs. serializability

• Serializable Snapshot Isolation

• SSI implementation overview

• Using SSI

• Performance results

3Saturday, May 21, 2011

Transactions
Transactions group related operations:
shouldnʼt see one operation without the others

• ...even if the system crashes (recoverability)

• ...even if other transactions are executing
concurrently (isolation)

4Saturday, May 21, 2011

Isolation
Serializable isolation:
each transaction is guaranteed to behave
as though itʼs the only one running

• makes it easy to reason about each
transactionʼs behavior in isolation

Weaker isolation levels:

• concurrent transactions can
cause anomalous behavior

5Saturday, May 21, 2011

Isolation Levels
SQL Standard

SERIALIZABLE

REPEATABLE
 READ

READ
COMMITTED

READ
UNCOMMITTED

9.0

snapshot
isolation

per-statement
snapshots

6Saturday, May 21, 2011

Isolation Levels
SQL Standard

SERIALIZABLE

REPEATABLE
 READ

READ
COMMITTED

READ
UNCOMMITTED

9.0

snapshot
isolation

per-statement
snapshots

9.0

snapshot
isolation

per-statement
snapshots

6Saturday, May 21, 2011

Isolation Levels
SQL Standard

SERIALIZABLE

REPEATABLE
 READ

READ
COMMITTED

READ
UNCOMMITTED

9.0

snapshot
isolation

per-statement
snapshots

9.0

snapshot
isolation

per-statement
snapshots

9.1

SSI

snapshot
isolation

per-statement
snapshots

6Saturday, May 21, 2011

Snapshot Isolation
Each transaction sees a “snapshot” of DB
taken at its first query

• implemented using MVCC

• tuple-level write locks prevent
concurrent modifications

Still a weaker isolation level
than true serializability!

7Saturday, May 21, 2011

Agenda
• What is serializability? Why do we want it?

• Snapshot isolation vs. serializability

• Serializable Snapshot Isolation

• SSI implementation overview

• Using SSI

• Performance results

8Saturday, May 21, 2011

Goal:
 ensure at least one
 guard always on-duty

guard on-duty?on-duty?

Alice y

Bob y

9Saturday, May 21, 2011

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = x
}

COMMIT

Goal:
 ensure at least one
 guard always on-duty

guard on-duty?on-duty?

Alice y

Bob y

9Saturday, May 21, 2011

guard on-duty?on-duty?

Alice y

Bob y

10Saturday, May 21, 2011

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

10Saturday, May 21, 2011

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

10Saturday, May 21, 2011

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ʻAliceʼ
}
COMMIT

10Saturday, May 21, 2011

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ʻAliceʼ
}
COMMIT

n

10Saturday, May 21, 2011

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guards = ʻBobʼ
}
COMMIT

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ʻAliceʼ
}
COMMIT

n

10Saturday, May 21, 2011

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guards = ʻBobʼ
}
COMMIT

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ʻAliceʼ
}
COMMIT

n

n

10Saturday, May 21, 2011

Serializable means: results equivalent to
some serial ordering of the transactions
Serialization history graph shows
dependencies between transactions

• A ➔ B (“wr-dependency”)
if B sees a change made by A

• A ➔ B (“ww-dependency”)
if B overwrites a change by A

• B ➔ A (“rw-conflict”)
if B doesnʼt see a change made by A

Serializable if no cycle in graph

11Saturday, May 21, 2011

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guards = ʻBobʼ
}
COMMIT

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ʻAliceʼ
}
COMMIT

n

n

12Saturday, May 21, 2011

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guards = ʻBobʼ
}
COMMIT

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ʻAliceʼ
}
COMMIT

n

n

rw-conflict:
T1 didnʼt see
T2ʼs UPDATE

12Saturday, May 21, 2011

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guards = ʻBobʼ
}
COMMIT

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ʻAliceʼ
}
COMMIT

n

n

rw-conflict:
T1 didnʼt see
T2ʼs UPDATE

rw-conflict:
T2 didnʼt see
T1ʼs UPDATE

12Saturday, May 21, 2011

T2

rw-conflict:
T1 didnʼt see
T2ʼs UPDATE

T1

rw-conflict:
T2 didnʼt see
T1ʼs UPDATE

cycle means no serial order exists!
T1 before T2 before T1...

13Saturday, May 21, 2011

Batch Processing Example
• control table just holds current batch #

• receipts table entries tagged w/ batch #

Three transactions:
• read current batch, insert receipt tagged w/ it

• increment current batch #

• read batch, get all receipts for previous batch

Invariant: after we read yesterdayʼs report,
no new receipts for yesterday should appear

14Saturday, May 21, 2011

T1 T2

SELECT batch
FROM control
 [result = 5/19] UPDATE control

SET batch = 5/20

COMMIT

INSERT receipt
 (5/19, …)

COMMIT

rw-conflict: T1 didnʼt see T2ʼs UPDATE

15Saturday, May 21, 2011

T2
[incr-batch]

T1
[add-receipt]

rw-conflict:
T1 didnʼt see
T2ʼs UPDATE

Serializable!
Apparent order of execution: T1 before T2

...but T2 committed before T1. Thatʼs OK!

16Saturday, May 21, 2011

T1 T2

SELECT batch
FROM control
 [result = 5/19]

UPDATE control
SET batch = 5/20

COMMIT

INSERT receipt
 (5/19, …)

COMMIT

T3

17Saturday, May 21, 2011

T1 T2

SELECT batch
FROM control
 [result = 5/19]

UPDATE control
SET batch = 5/20

COMMIT

INSERT receipt
 (5/19, …)

COMMIT

SELECT batch...
 [result = 5/20]

SELECT
5/19 receipts
 [...]

T3

17Saturday, May 21, 2011

T1 T2

SELECT batch
FROM control
 [result = 5/19]

UPDATE control
SET batch = 5/20

COMMIT

INSERT receipt
 (5/19, …)

COMMIT

SELECT batch...
 [result = 5/20]

SELECT
5/19 receipts
 [...]

T3

rw-conflict

17Saturday, May 21, 2011

T1 T2

SELECT batch
FROM control
 [result = 5/19]

UPDATE control
SET batch = 5/20

COMMIT

INSERT receipt
 (5/19, …)

COMMIT

SELECT batch...
 [result = 5/20]

SELECT
5/19 receipts
 [...]

T3

rw-conflict

wr-dependency

17Saturday, May 21, 2011

T1 T2

SELECT batch
FROM control
 [result = 5/19]

UPDATE control
SET batch = 5/20

COMMIT

INSERT receipt
 (5/19, …)

COMMIT

SELECT batch...
 [result = 5/20]

SELECT
5/19 receipts
 [...]

T3

rw-conflict

wr-dependency

rw-conflict

17Saturday, May 21, 2011

T2
[incr-batch]

T1
[add-receipt]

rw-conflict:
T1 didnʼt see
T2ʼs UPDATE

Not serializable!
Adding the read-only transaction creates a cycle.

T3
[report]

wr-dependency:
T3 did see

T2ʼs UPDATE

rw-conflict:
T3 didnʼt see T1ʼs INSERT

18Saturday, May 21, 2011

Agenda
• What is serializability? Why do we want it?

• Snapshot isolation vs. serializability

• Serializable Snapshot Isolation

• SSI implementation overview

• Using SSI

• Performance results

19Saturday, May 21, 2011

Existing Approaches
to Serializability

• ignore the problem, make the user deal
• use SELECT FOR UPDATE, LOCK TABLE
• can be hard to figure out where to put these!

• run one transaction at a time [not practical]

• strict two-phase locking
• acquire lock on every object read or written
• causes readers to block writers & vice versa

20Saturday, May 21, 2011

T1 T2

SELECT batch
FROM control
 [result = 5/19]

21Saturday, May 21, 2011

T1 T2

SELECT batch
FROM control
 [result = 5/19]

21Saturday, May 21, 2011

T1 T2

SELECT batch
FROM control
 [result = 5/19] UPDATE control

SET batch = 5/20
 [blocked!]

21Saturday, May 21, 2011

T1 T2

SELECT batch
FROM control
 [result = 5/19] UPDATE control

SET batch = 5/20
 [blocked!]

INSERT receipt
 (5/19, …)

COMMIT

21Saturday, May 21, 2011

SSI Approach (Almost.)
Actually build the dependency graph!

• If a cycle is created,
abort some transaction to break it

T2

T1

22Saturday, May 21, 2011

SSI Approach (Almost.)
Actually build the dependency graph!

• If a cycle is created,
abort some transaction to break it

T2

T1

22Saturday, May 21, 2011

SSI Approach (Almost.)
Actually build the dependency graph!

• If a cycle is created,
abort some transaction to break it

T2

T1 T3

22Saturday, May 21, 2011

SSI Approach (Almost.)
Actually build the dependency graph!

• If a cycle is created,
abort some transaction to break it

T2

T1 T3X
22Saturday, May 21, 2011

SSI Approach (Almost.)
Actually build the dependency graph!

• If a cycle is created,
abort some transaction to break it

T2

T1 T3

22Saturday, May 21, 2011

SSI Approach (Almost.)
Actually build the dependency graph!

• If a cycle is created,
abort some transaction to break it

T2

T1 T3X
22Saturday, May 21, 2011

Serializability theory tells us:
• every cycle contains two adjacent

rw-conflict edges (where A didnʼt see Bʼs update)

So we can just look for those
• donʼt need to track other types of edges
• conservative (occasional false positives)

SSI Rule:
Donʼt let a transaction have both

 a rw-conflict in and a rw-conflict out!

[Cahill et al. Serializable Isolation For Snapshot Databases, SIGMOD ʼ08]

23Saturday, May 21, 2011

Agenda
• What is serializability? Why do we want it?

• Snapshot isolation vs. serializability

• Serializable Snapshot Isolation

• SSI implementation overview

• Using SSI

• Performance results

24Saturday, May 21, 2011

Implementing SSI
Need to keep some extra transaction state

• mainly: list of rw-conflicts in and out

• if one transaction has both, abort something

• note: need to keep lists after xact commits,
until all concurrent transactions commit

But how do we identify a rw-conflict?

25Saturday, May 21, 2011

Identifying rw-conflicts
Recall: T1 —> T2 if T2 makes a change,
and T1ʼs read doesnʼt see its effects

• If T2ʼs write happens first:
T1 will see tupleʼs MVCC data and ignore it

• If T1ʼs read happens first:
use a “lock” to know that T2ʼs write conflicts

xmin xmax data
T2 …

26Saturday, May 21, 2011

Identifying rw-conflicts
Recall: T1 —> T2 if T2 makes a change,
and T1ʼs read doesnʼt see its effects

• If T2ʼs write happens first:
T1 will see tupleʼs MVCC data and ignore it

• If T1ʼs read happens first:
use a “lock” to know that T2ʼs write conflicts

xmin xmax data
T2 …

T2 not in T1ʼs snapshot
=> conflict w/ T1

26Saturday, May 21, 2011

Tracking Read Dependencies
Acquire a “SIREAD lock” on anything read

Check for SIREAD locks on write, flag conflict

New lock manager — unlike current locks:

• no blocking! (just flag a conflict instead)

• can persist beyond transaction commit

• multi-granularity (relation, page, tuple); promotion

• needs predicate locking

27Saturday, May 21, 2011

Predicate Locking
Not enough just to lock returned tuples:

Really want predicate locking:
“lock everything where x=42” (but not feasible)

Instead: lock corresponding index page
• if no index, lock entire relation

SELECT FROM...
WHERE x=42
[3 results]

INSERT INTO…
VALUES (x=42)
[should conflict; wonʼt]

28Saturday, May 21, 2011

Other Features
Deferrable read-only transactions

• wait until xact can be executed safely
without lock overhead or risk of abort

Dealing with shared memory exhaustion

• promote locks to coarser granularity

• reduce information about committed transactions
and push to disk if necessary (SLRU)

29Saturday, May 21, 2011

Agenda
• What is serializability? Why do we want it?

• Snapshot isolation vs. serializability

• Serializable Snapshot Isolation

• SSI implementation overview

• Using SSI

• Performance results

30Saturday, May 21, 2011

Conflicts may cause transactions to abort
• source of conflict might not be obvious

• will usually succeed if retried

• middleware that automatically retries can help

Performance tips
• declare transactions READ ONLY if possible

• donʼt put more into a single transaction than needed

• donʼt leave connections dangling “idle in transaction”

31Saturday, May 21, 2011

Agenda

• What is serializability? Why do we want it?

• Snapshot isolation vs. serializability

• Serializable Snapshot Isolation

• SSI implementation overview

• Performance results

32Saturday, May 21, 2011

Performance
Two main sources of slowdown

• How much CPU overhead does the
SIREAD lock manager add?
- in-memory pgbench: not much slowdown

• How often are transactions rolled back
because of conflicts?
- depends heavily on workload

33Saturday, May 21, 2011

Measuring Abort Rate
DBT-2 benchmark (OLTP, like TPC-C)

• modified to retry transactions after
serialization failure

Configuration:

• 16-core Xeon E7310, 1.60GHz, 8 GB RAM

• 3x 15K drives for data; 1 for log

• database size ~20 GB

34Saturday, May 21, 2011

DBT-2 Performance
Approach: use highest scale factor that gives
90% request latency < 5 seconds

REPEATABLE READ (snapshot isolation):
• 160 warehouses, 1941 new order transactions/minute

• 1.5% transactions retried due to serialization failure

 SERIALIZABLE (SSI):
• 157 warehouses, 1923 NOTPM (< 2% slowdown)

• 3.1% transactions retried due to serialization failure

• no aborts of read-only transactions

• 15% abort rate for “delivery” xacts (4% of workload)

35Saturday, May 21, 2011

Summary
True serializable transactions are here!

• avoiding snapshot isolation anomalies
can simplify applications

• implemented using a novel technique

• reuses existing snapshot isolation
mechanisms

• performance cost is reasonable

36Saturday, May 21, 2011

