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Overview
Serializable isolation makes it easier to reason 
about concurrent transactions

In 9.0 and before, SERIALIZABLE was really 
snapshot isolation – allows anomalies

in 9.1: Serializable Snapshot Isolation (SSI)

• a new way to ensure true serializability 
(first implementation in a production DBMS!)
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Agenda
• What is serializability? Why do we want it?

• Snapshot isolation vs. serializability

• Serializable Snapshot Isolation

• SSI implementation overview

• Using SSI

• Performance results
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Transactions
Transactions group related operations:
shouldnʼt see one operation without the others

• ...even if the system crashes (recoverability)

• ...even if other transactions are executing 
concurrently (isolation)
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Isolation
Serializable isolation:
each transaction is guaranteed to behave 
as though itʼs the only one running

• makes it easy to reason about each 
transactionʼs behavior in isolation

Weaker isolation levels:

• concurrent transactions can
cause anomalous behavior
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Isolation Levels
SQL Standard

SERIALIZABLE

REPEATABLE
 READ

READ 
COMMITTED

READ
UNCOMMITTED

9.0

snapshot
isolation

per-statement
snapshots
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Snapshot Isolation
Each transaction sees a “snapshot” of DB 
taken at its first query

• implemented using MVCC

• tuple-level write locks prevent 
concurrent modifications

Still a weaker isolation level 
than true serializability!
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Agenda
• What is serializability? Why do we want it?

• Snapshot isolation vs. serializability

• Serializable Snapshot Isolation

• SSI implementation overview

• Using SSI

• Performance results
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Goal: 
  ensure at least one
  guard always on-duty

guard on-duty?on-duty?

Alice y

Bob y
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BEGIN

SELECT count(*) 
FROM guards
WHERE on-duty = y

if > 1 {
   UPDATE guards
   SET on-duty = n
   WHERE guard = x
}

COMMIT

Goal: 
  ensure at least one
  guard always on-duty

guard on-duty?on-duty?

Alice y

Bob y
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guard on-duty?on-duty?

Alice y

Bob y
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guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*) 
FROM guards
WHERE on-duty = y
         [result = 2]
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Serializable means: results equivalent to 
some serial ordering of the transactions
Serialization history graph shows 
dependencies between transactions

• A ➔ B   (“wr-dependency”)
if B sees a change made by A

• A ➔ B   (“ww-dependency”)
if B overwrites a change by A

• B ➔ A   (“rw-conflict”)
if B doesnʼt see a change made by A

Serializable if no cycle in graph
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T2

rw-conflict:
T1 didnʼt see
T2ʼs UPDATE

T1

rw-conflict:
T2 didnʼt see
T1ʼs UPDATE

cycle means no serial order exists!
T1 before T2 before T1... 
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Batch Processing Example
• control table just holds current batch #

• receipts table entries tagged w/ batch #

Three transactions:
• read current batch, insert receipt tagged w/ it

• increment current batch #

• read batch, get all receipts for previous batch

Invariant: after we read yesterdayʼs report, 
no new receipts for yesterday should appear
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T1 T2

SELECT batch
FROM control
 [result = 5/19] UPDATE control

SET batch = 5/20

COMMIT

INSERT receipt
  (5/19,   …)

COMMIT

rw-conflict: T1 didnʼt see T2ʼs UPDATE
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T2
[incr-batch]

T1
[add-receipt]

rw-conflict:
T1 didnʼt see
T2ʼs UPDATE

Serializable! 
Apparent order of execution: T1 before T2

...but T2 committed before T1. Thatʼs OK!
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T1 T2

SELECT batch
FROM control
 [result = 5/19]

UPDATE control
SET batch = 5/20

COMMIT

INSERT receipt
  (5/19,   …)

COMMIT

T3
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T1 T2

SELECT batch
FROM control
 [result = 5/19]
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   [...]

T3
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T2
[incr-batch]

T1
[add-receipt]

rw-conflict:
T1 didnʼt see
T2ʼs UPDATE

Not serializable! 
Adding the read-only transaction creates a cycle.

T3
[report]

wr-dependency:
T3 did see

T2ʼs UPDATE

rw-conflict:
T3 didnʼt see T1ʼs INSERT
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Agenda
• What is serializability? Why do we want it?

• Snapshot isolation vs. serializability

• Serializable Snapshot Isolation

• SSI implementation overview

• Using SSI

• Performance results
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Existing Approaches
to Serializability

• ignore the problem, make the user deal
• use SELECT FOR UPDATE, LOCK TABLE
• can be hard to figure out where to put these!

• run one transaction at a time [not practical]

• strict two-phase locking 
• acquire lock on every object read or written
• causes readers to block writers & vice versa
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T1 T2

SELECT batch
FROM control
 [result = 5/19]
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T1 T2

SELECT batch
FROM control
 [result = 5/19]
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T1 T2

SELECT batch
FROM control
 [result = 5/19] UPDATE control

SET batch = 5/20
      [blocked!]
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T1 T2

SELECT batch
FROM control
 [result = 5/19] UPDATE control

SET batch = 5/20
      [blocked!]

INSERT receipt
  (5/19,   …)

COMMIT
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SSI Approach (Almost.)
Actually build the dependency graph!

• If a cycle is created, 
abort some transaction to break it

T2

T1
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Serializability theory tells us:
• every cycle contains two adjacent

rw-conflict edges (where A didnʼt see Bʼs update)

So we can just look for those
• donʼt need to track other types of edges
• conservative (occasional false positives)

SSI Rule:
Donʼt let a transaction have both

 a rw-conflict in and a rw-conflict out!

[Cahill et al. Serializable Isolation For Snapshot Databases, SIGMOD ʼ08]
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Agenda
• What is serializability? Why do we want it?

• Snapshot isolation vs. serializability

• Serializable Snapshot Isolation

• SSI implementation overview

• Using SSI

• Performance results
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Implementing SSI
Need to keep some extra transaction state

• mainly: list of rw-conflicts in and out

• if one transaction has both, abort something

• note: need to keep lists after xact commits,
until all concurrent transactions commit

But how do we identify a rw-conflict?
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Identifying rw-conflicts
Recall: T1 —> T2 if T2 makes a change, 
and T1ʼs read doesnʼt see its effects

• If T2ʼs write happens first: 
T1 will see tupleʼs MVCC data and ignore it

• If T1ʼs read happens first:
use a “lock” to know that T2ʼs write conflicts

xmin xmax data
T2 …
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Identifying rw-conflicts
Recall: T1 —> T2 if T2 makes a change, 
and T1ʼs read doesnʼt see its effects

• If T2ʼs write happens first: 
T1 will see tupleʼs MVCC data and ignore it

• If T1ʼs read happens first:
use a “lock” to know that T2ʼs write conflicts

xmin xmax data
T2 …

T2 not in T1ʼs snapshot
=> conflict w/ T1
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Tracking Read Dependencies
Acquire a “SIREAD lock” on anything read

Check for SIREAD locks on write, flag conflict

New lock manager — unlike current locks:

• no blocking! (just flag a conflict instead)

• can persist beyond transaction commit

• multi-granularity (relation, page, tuple); promotion

• needs predicate locking
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Predicate Locking
Not enough just to lock returned tuples:

Really want predicate locking: 
“lock everything where x=42”  (but not feasible)

Instead: lock corresponding index page
• if no index, lock entire relation

SELECT FROM...
WHERE x=42
[3 results]

INSERT INTO…
VALUES (x=42)
[should conflict; wonʼt]
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Other Features
Deferrable read-only transactions

• wait until xact can be executed safely
without lock overhead or risk of abort

Dealing with shared memory exhaustion

• promote locks to coarser granularity

• reduce information about committed transactions 
and push to disk if necessary (SLRU)
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Agenda
• What is serializability? Why do we want it?

• Snapshot isolation vs. serializability

• Serializable Snapshot Isolation

• SSI implementation overview

• Using SSI

• Performance results
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Conflicts may cause transactions to abort
• source of conflict might not be obvious

• will usually succeed if retried

• middleware that automatically retries can help

Performance tips
• declare transactions READ ONLY if possible

• donʼt put more into a single transaction than needed

• donʼt leave connections dangling “idle in transaction”
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Agenda

• What is serializability? Why do we want it?

• Snapshot isolation vs. serializability

• Serializable Snapshot Isolation

• SSI implementation overview

• Performance results
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Performance
Two main sources of slowdown

• How much CPU overhead does the 
SIREAD lock manager add?
- in-memory pgbench: not much slowdown

• How often are transactions rolled back 
because of conflicts?
- depends heavily on workload
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Measuring Abort Rate
DBT-2 benchmark (OLTP, like TPC-C)

• modified to retry transactions after 
serialization failure

Configuration:

• 16-core Xeon E7310, 1.60GHz, 8 GB RAM

• 3x 15K drives for data; 1 for log

• database size ~20 GB
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DBT-2 Performance
Approach: use highest scale factor that gives 
90% request latency < 5 seconds

REPEATABLE READ (snapshot isolation): 
• 160 warehouses, 1941 new order transactions/minute

• 1.5% transactions retried due to serialization failure

 SERIALIZABLE (SSI): 
• 157 warehouses, 1923 NOTPM (< 2% slowdown)

• 3.1% transactions retried due to serialization failure

• no aborts of read-only transactions

• 15% abort rate for “delivery” xacts (4% of workload)
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Summary
True serializable transactions are here!

• avoiding snapshot isolation anomalies 
can simplify applications

• implemented using a novel technique

• reuses existing snapshot isolation 
mechanisms

• performance cost is reasonable
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