= Microsoft

SlimeMold: Hardware Load Balancer at Scale
In Datacenter
Ziyuan Liu, Zhixiong Niu, Ran Shu, Liang Gao, Guohong Lai, Na Wang,

Zongying He, Jacob Nelson, Dan R. K. Ports, Lihua Yuan, Peng Cheng,
Yonggiang Xiong

Beihang University, Microsoft, Ragile Networks Inc., Broadcom Inc.

Background — L4 Load Balancer in Data Center

L4 Load Balancer: distribute packets to backend server pool

DIP 1
Server 1
VIP

> DIP 2

> > Server 2

>

Load Balancer DIP 3
Server 3

Background — L4 Load Balancer in Data Center

L4 Load Balancer: distribute packets to backend server pool

Duet: Cloud Scale Load Balancing with Hardware and

Ananta: Cland Qeala |l nad Ral Software

P4

ubik: Unlocking the Power of Localitv and End-Point Flexibility in Cloud |, ... 1 coceqy

Magle

Romaj

Silk

Univer

A High-Speed Load-Balancer Design with Guaranteed Per-Connection-Consistency

Tiara: A Scalable and Efficient Hardware Acceleration Architecture for Stateful
Layer-4 Load Balancing

Chaoliang Zeng'* Layong Luo®> Teng Zhang® Zilong Wang!* Luyang Li** Wenchen Han**

Nan Chen? Lebing Wan? Lichao Liu?> Zhipeng Ding?> Xiongfei Geng? Tao Feng?
Feng NingZ Kai Chen! Chuanxiong Guo?
' Hong Kong University of Science and Technology *ByteDance ICT/CAS *Peking University

Background - Stateful Load Balancer

L4 Load Balancer: distribute packets to backend server pool

Most production L4 load balancer is stateful i B

= ConnTable: stores flow to DIP mapping EE— IP address
= Examples: Ananta [1], Maglev [2], ...

Often use software LB (SLB) for agility and reliability

[1] Patel, Parveen, et al. "Ananta: Cloud scale load balancing." ACM SIGCOMM'13. 2013.
[2] Eisenbud, Daniel E., et al. "Maglev: A fast and reliable software network load balancer." USENIX NSDI'16. 2016.

Background — HLB

SLB incurs significant costs
= Limited single node bandwidth
= Two orders of magnitude less than requirement
= Hundreds or even thousands of SLB nodes

Trend: build hardware LB (HLB) using programmable switches
= Scale up performance
= High throughput density

Scale out HLB

HLB bottleneck: ConnTable capacity

Scale out ConnTable! ST
e « HLBT Comabl
_ — HLB 2 ConnTable

ConnTable Requirement HLB 3 ConnTable

6

Existing Solution — VIP Partition

Each HLB only serves part of VIPs

Limitation: capacity and efficiency
= Cannot serve giant VIPs
= Load imbalance due to static partition

(E?E) Border Router
KN
A, 2 Vip
W
RTH RTA RTA
€« > €« > €« >
TR KN KN

HLB 1 HLB 2 HLB 3

Existing Solution - ECMP

Border router distribute traffic to HLBs using ECMP

Limitation: Potential PCC violation

= Per-Connection Consistency (PCC): a flow should be served by only one
backend during its liveness

_ RTH
= ECMP reshuffle directs flow to another HLB, ‘E,L;’
e.g., add a new HLB node /\
+
(5 ZI) Border Router HLB 1 (512') (512') HLB 2
VAR UARY VAR
fCOMP ECmp
Rt R RTH
A P N

HLB 1 HLB 2 HLB 3 Server 1 Server 2

Our Solution - SlimeMold

Key idea: HLBs work collaboratively to take
consistent actions

SlimeMold: Decouple HLB roles logically

= Forwarders: entry points that can always map a
flow to the HLB who has its ConnTable entry

= State Owners: store part of ConnTable

RTH
S
P /\
”
R RTtA
HLB 1 <h;><—<h;> HLB 2

Server 1 Server 2

m State Owner

5-tuple HLB 1

Our Solution - SlimeMold

Flow to State Owner table is as big as ConnTable
= Grouping flows as segments to reduce size

Simple flow to segment mapping

Want loads between segments evenly
= Flow hash (e.g., CRC32)

Segment as the unit of load distribution between State Owners

= Number of segment should be large enough to allow dynamic scaling, e.q.,
10x number of State Owners

m State Owner | m State Owner

5-tuple State Owner 3 O0x13B State Owner 3

10

Splitting State Owner Table

Hash to State Owner table is too big
= Consumes unaffordable Forwarder table resource

Introduce Secondary Lookup to split the table into 2-level

SRC »Forwarder »State Owner -DIP
“vash | state owner [Fow | o
Ox13B State Owner 3 5-tuple DIP 10

¥

SRC *Forwarder ———Secondary Lookup———State Owner *DIP

“hash | sec.tookup [N Hosh | state owner [Flow | 0P

0x13_ Sec. Lookup 1 Ox13B State Owner 3 5-tuple DIP 10

11

SlimeMold Overview

FO rwa rd er Forwarder Secondary Lookup State Owner
» Announces VIPs as entry point SlimeMold

St 1813 82 &3
= Routes packets to Secondary Lookup 7R 72 7aR N
Secondary Lookup xtal xta 2 xt2
= Routes packets to State Owner vy vy vy vy
State Owner = o S o
: sRe 2 = = or
= Exclusively owns part of flow states e = =

= Forwards packet to DIP

Note: multiple roles may locate on a same physical node

SlimeMold Workflow

Forwarder Secondary Lookup . State Owner

L1 SlimeMold SL2

RTH

€ >

TARY
| Hash | Sec. Lookup a2l <tx
0x13_ Sec. Lookup 1 (IZL;)

Flow Hash: 0x13B T: o—
SRC &) | C—
| C— | C—

13

SlimeMold Workflow

hash »

Ox13B State Owner 3
E R‘Pz
I(.LN

Flow Hash: 0x13B

SRC

000 22 ¢
iili

Forwarder

Secondary Lookup

R‘P;l
z.w

SlimeMold SL2

R‘P;l
z.w

R‘Pz
«
so3 & “

 Co—
DIP 1 =
Ca—

State Owner

SlimeMold Workflow

Forwarder Secondary Lookup State Owner
L1 SlimeMold SL2
R‘P;l R‘Pz R‘P;l R‘Pz
Z.LN |(.1.§| |(.1.§| |(.1.§|
xtal xta SOl Fow | 0P __
503 5-tuple DIP 1
|(.1.§| Z.LN |(.1.§|
 C— — | C— C—
SRC €3 C— DIP 1 3 CDIP2
 C— C— | C— C—

Flow Hash: 0x13B

15

SlimeMold Workflow

Forwarder Secondary Lookup State Owner

L1 SlimeMold SL2

R‘P;l R‘Pz R‘P;l (5?3
z.w z.w z.w TERY
Rt R‘t‘;l R‘Pz RTA
ZIS TS SOl B RS S04
co— o — —

SRC =3) P13 C—JDIP2
co— /s /s /s

Flow Hash: 0x13B

SlimeMold Building Block

Building block: a switch that support full set of SlimeMold roles

= Can be configured as any combination of SlimeMold roles

-DIP

SRC *Forwarder Secondary Lookup State Owner

“hash | sec.tookup [N Hosh | stste owner [Fiow | 0P

Normal Switch Function SlimeMold Function

e L ConnTable
Classification (State Owner) Pack. Gen.

Prefix Lookup
(FW, SL)

Post

: Extra Info. Routing
Processing

17

Evaluation — Building Block Performance

We build a prototype using Ragile programmable switch equipped
with Broadcom BCM56788 SmartToR chip

Throughtput P99 lat. CT entries

SlimeMold BB 8Tbps < 2us 1M
Table 1: Performance of SlimeMold Building Block

Line rate with low latency

1T M ConnTable entries

18

Evaluation — ConnTable Performance

We build a prototype using Ragile programmable switch equipped
with Broadcom BCM56788 SmartToR chip

Query Insert Delete

OPS line rate ' 1.485M ~ 0.6M
Latency < 2us 167ns < 140ms

Table 2: Performance of ConnTable Operations

Line rate ConnTable lookup
Near 1.5 MOPS insertion and ~0.6 MOPS deletion

 hardware-learning based insertion is extremely faster than existing
control-plane based solution

19

Large Scale Simulation

5001 —— [deal (y = x)
400/ ——— Target(y =0.9x)
Actual

Flow Concurrency (Millions)
(U8
S
S

0 100 200 300 400 500
Number of Switches

Figure 4: Scalability

Highly efficient scale out

Linear scalability

20

Conclusion

SlimeMold: a collaborative scalable hardware load balancer for data

centers
= High performance building block prototype
= Linear scalability and high efficiency

=% Microsoft

Backup

23

DIP Decision

A separate service out of SlimeMold

Interactions between SlimeMold

= Direct to the service when a State Owner should but does not have the ConnTable entry
= Handle all following packets within SlimeMold itself

Only needs to handle first several packets of a flow
Free to use any LB algorithm

Allow to make inconsistent decision
= Arbitrate by State Owner

Detour in SlimeMold

Multiple optimizations can be leveraged

= Secondary Lookup placement policy: to reduce detour between Forwarder and State Owner
= ConnTable cache on Forwarder

Segment to State Owner Table

Almost static to avoid frequent synchronization overhead
= A flow will change ConnTable, but not segment to State Owner table

