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Background — L4 Load Balancer in Data Center

L4 Load Balancer: distribute packets to backend server pool
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Background - Stateful Load Balancer

L4 Load Balancer: distribute packets to backend server pool

Most production L4 load balancer is stateful i B

= ConnTable: stores flow to DIP mapping EE— IP address
= Examples: Ananta [1], Maglev [2], ...

Often use software LB (SLB) for agility and reliability

[1] Patel, Parveen, et al. "Ananta: Cloud scale load balancing." ACM SIGCOMM'13. 2013.
[2] Eisenbud, Daniel E., et al. "Maglev: A fast and reliable software network load balancer." USENIX NSDI'16. 2016.



Background — HLB

SLB incurs significant costs
= Limited single node bandwidth
= Two orders of magnitude less than requirement
= Hundreds or even thousands of SLB nodes

Trend: build hardware LB (HLB) using programmable switches
= Scale up performance
= High throughput density



Scale out HLB

HLB bottleneck: ConnTable capacity

Scale out ConnTable! ST
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Existing Solution — VIP Partition

Each HLB only serves part of VIPs

Limitation: capacity and efficiency
= Cannot serve giant VIPs
= Load imbalance due to static partition
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Existing Solution - ECMP

Border router distribute traffic to HLBs using ECMP

Limitation: Potential PCC violation

= Per-Connection Consistency (PCC): a flow should be served by only one
backend during its liveness

_ RTH
= ECMP reshuffle directs flow to another HLB, ‘E,L;’
e.g., add a new HLB node /\
+
(5 ZI) Border Router HLB 1 (512') (512') HLB 2
VAR UARY VAR
fCOMP ECmp
Rt R RTH
A P N

HLB 1 HLB 2 HLB 3 Server 1 Server 2



Our Solution - SlimeMold

Key idea: HLBs work collaboratively to take
consistent actions

SlimeMold: Decouple HLB roles logically

= Forwarders: entry points that can always map a
flow to the HLB who has its ConnTable entry

= State Owners: store part of ConnTable
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Our Solution - SlimeMold

Flow to State Owner table is as big as ConnTable
= Grouping flows as segments to reduce size

Simple flow to segment mapping

Want loads between segments evenly
= Flow hash (e.g., CRC32)

Segment as the unit of load distribution between State Owners

= Number of segment should be large enough to allow dynamic scaling, e.q.,
10x number of State Owners

m State Owner | m State Owner

5-tuple State Owner 3 O0x13B State Owner 3
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Splitting State Owner Table

Hash to State Owner table is too big
= Consumes unaffordable Forwarder table resource

Introduce Secondary Lookup to split the table into 2-level

SRC »Forwarder »State Owner -DIP
“vash | state owner [ Fow | o
Ox13B  State Owner 3 5-tuple DIP 10

¥

SRC *Forwarder ———Secondary Lookup———State Owner *DIP

“hash | sec.tookup [N Hosh | state owner [ Flow | 0P

0x13_  Sec. Lookup 1 Ox13B  State Owner 3 5-tuple DIP 10
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SlimeMold Overview

FO rwa rd er Forwarder Secondary Lookup State Owner
» Announces VIPs as entry point SlimeMold

St 1813 82 &3
= Routes packets to Secondary Lookup 7R 72 7aR N
Secondary Lookup xtal  xta 2 xt2
= Routes packets to State Owner vy vy vy vy
State Owner = o S o
: sRe 2 = = or
= Exclusively owns part of flow states e = =

= Forwards packet to DIP

Note: multiple roles may locate on a same physical node



SlimeMold Workflow

Forwarder Secondary Lookup . State Owner
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SlimeMold Workflow
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SlimeMold Workflow

Forwarder Secondary Lookup State Owner
L1 SlimeMold SL2
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SlimeMold Workflow

Forwarder Secondary Lookup State Owner

L1 SlimeMold SL2
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SlimeMold Building Block

Building block: a switch that support full set of SlimeMold roles

= Can be configured as any combination of SlimeMold roles

-DIP

SRC *Forwarder Secondary Lookup State Owner

“hash | sec.tookup [N Hosh | stste owner [ Fiow | 0P

Normal Switch Function SlimeMold Function

e L ConnTable
Classification (State Owner) Pack. Gen.

Prefix Lookup
(FW, SL)

Post

: Extra Info. Routing
Processing
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Evaluation — Building Block Performance

We build a prototype using Ragile programmable switch equipped
with Broadcom BCM56788 SmartToR chip

Throughtput P99 lat. CT entries

SlimeMold BB 8Tbps < 2us 1M
Table 1: Performance of SlimeMold Building Block

Line rate with low latency

1T M ConnTable entries
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Evaluation — ConnTable Performance

We build a prototype using Ragile programmable switch equipped
with Broadcom BCM56788 SmartToR chip

Query  Insert Delete

OPS line rate ' 1.485M  ~ 0.6M
Latency < 2us 167ns < 140ms

Table 2: Performance of ConnTable Operations

Line rate ConnTable lookup
Near 1.5 MOPS insertion and ~0.6 MOPS deletion

 hardware-learning based insertion is extremely faster than existing
control-plane based solution

19



Large Scale Simulation
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Figure 4: Scalability

Highly efficient scale out

Linear scalability
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Conclusion

SlimeMold: a collaborative scalable hardware load balancer for data

centers
= High performance building block prototype
= Linear scalability and high efficiency
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DIP Decision

A separate service out of SlimeMold

Interactions between SlimeMold

= Direct to the service when a State Owner should but does not have the ConnTable entry
= Handle all following packets within SlimeMold itself

Only needs to handle first several packets of a flow
Free to use any LB algorithm

Allow to make inconsistent decision
= Arbitrate by State Owner



Detour in SlimeMold

Multiple optimizations can be leveraged

= Secondary Lookup placement policy: to reduce detour between Forwarder and State Owner
= ConnTable cache on Forwarder



Segment to State Owner Table

Almost static to avoid frequent synchronization overhead
= A flow will change ConnTable, but not segment to State Owner table



