RedPlane: Enabling Fault-Tolerant
Stateful In-Switch Applications

Daehyeok Kims*
Jacob Nelson’, Dan Ports’, Vyas Sekar$, Srinivasan Seshan®

SCarnegie Mellon University — *Microsoft

Programmable networks are stateful

Classical switches Programmable “data plane” switches

Stateful in-switch applications:

network functions, monitoring,
Stateful action

>accelerating distributed systems

IP addr/prefix Forward (port) (IP addr, port) NAT (IP addr.,, port)

"Stateless” packet processing Programmable switching ASICs
=>» “Stateful” packet processing

Problem: Switch failure

Flow state does not exist!
=» Connection broken ®

J Switch failures are prevalent []

Other stateful apps suffer
from the same problem!

Match NAT action
(Flow ID) (IP. Port)

(10.0.0.1, 4321) (192.168.10.1, 1234)

[1] Liu et al., Crystalnet: Faithfully emulating large production networks. In ACM SOSP 2017.
[2] Meza et al., A large scale study of data center network reliability. In ACM IMC 2017.

Strawman solutions

S1: Checkpoint-recovery _ External -
,’ state store \\

Control plane

{
Switch Mismatch between the control
Sl el and data plane performance
. = miss some state / packet drops
[

Application
R

-
R4

N~ e o o = ==" Updates can be lost

S2: Chain replication ‘ . ‘
among switches Requires a custom routing policy

Application
e

Data plane

Consumes additional
resources

Our work: RedPlane

P2] [+RedPlane APIs that allow easy
App code| | P4API integration with apps

@ Correct state replication

RedPlane- entirely in the data plane
enabled app

S

One big fault-tolerant

switch abstraction! External

RedPlane- state store
enabled app

S

Inexpensive replicated state store
on commaodity servers

Outline

RedPlane design

RedPlane design overview
@

4 R +RedPlane
App code|| P4 AP

Developer
P {}{9{?} P4 Compiler

RedPlane-
enabled app

External

RedPlane- state store
enabled app

Challenge 1:
Correct replication in the data plane

Strawman: strict correctness used in server-based replicated systems

Buffer a packet until the state is replicated
(exactly-once semantics)

RedPlane-
enabled app
| —

P

Replication requests

—

state store
Responses

Ensure replication messages are delivered in order and reliably
(Linearizability)

Challenge 1:
Correct replication in the data plane

Strawman: strict correctness used in server-based replicated systems

Expensive to buffer entire packets ®

RedPlane-
enabled app

P

Replication requests

—

state store
Responses

Expensive to realize reliable transport
in the switch data plane ®

Linearizable mode: Relaxed correctness

Insight: End-to-end network apps already tolerate lossy networks!
Our approach: Linearizability-based relaxed correctness

7 In-order and reliable message delivery
TP > Provides linearizability
enabled app

External
state store

Permitting some input/output packet loss
= No need to buffer entire packets

Basic RedPlane protocol:
Realizing the linearizable mode in the data plane

Example: per-flow packet counter 1. Sends a state initialization
request

Piggyback an output packet
instead of buffering locally!

RedPlane-
enabled app

Init External
(k=Red) state store

R

P

External state

10

Basic RedPlane protocol:
Realizing the linearizable mode in the data plane
Example: per-flow packet counter 1. Sends a state initialization

request

2. Receives an ACK &
initializes the local state

RedPlane-
enablew ACK > External
(k=Red) state store

Switch local state External state

10

Basic RedPlane protocol:
Realizing the linearizable mode in the data plane
Example: per-flow packet counter 1. Sends a state initialization

request

2. Receives an ACK &
initializes the local state

RedPlane-
enabled app
R

» Replication =iciel 3. Replicates the updated
(k=Red, v=1) state store state

Switch local state External state

10

Basic RedPlane protocol:
Realizing the linearizable mode in the data plane

Example: per-flow packet counter 1. Sends a state initialization
request

2. Receives an ACK &
initializes the local state

RedPlane-

bled
—————" ACK 5 SSCiEl 3. Replicates the updated
(k=Red) state store state

Switch local state External state

4. Receives an ACK & releases
the output packet

10

Inconsistency due to unreliable channel

Problem: state in the switch and state store can be inconsistent due to
out-of-order requests or request packet loss

RedPlane-

bled y 4
w D ho "atlon External
(r o V=1 state store

Switch local state External state

‘_/’

Inconsistent!

11

Sequencing and lightweight retransmission

Our approach: A simple UDP-based transport with sequencing and
lightweight retransmission

Commits the latest requests only
based on a sequence number
RedPlane-

External
state store

Buffers only RedPlane header by leveraging
packet mirroring & truncating feature in ASIC External state

enabled app ; Replication

Repl. (k=Red, v=1, se=1)

12

Challenge 2: Transparent to routing policies

A switch failure or recovery can cause routing traffic to another switch

RedPlane-
enabled app

S EE—

Wl Ensure that a packet accesses the correct state

irrespective of the location of the current switch

RedPlane-
enabled app

N —

: External
Swntc_:__h-2 state store

Accessing stale state

Problem: A packet may access state state during failover or recovery

RedPlane-

enabled app

=

Switch-2

External

state store
RedPlane-

B-xE
Switch-1 External state
Link failure

- Local state is still alive

14

Accessing stale state

Problem: A packet may access state state during failover or recovery

RedPlane-

enabled app

=

Switch-2

External
state store
RedPlane-
enabled app

/ 5 R

Switch-1 External state

14

Accessing stale state

Problem: A packet may access state state during failover or recovery

RedPlane-

enabled app

=

Switch-2

External
state store
RedPlane-

enabled app

Switch-1 External state

Reads stale state! ®

14

Lease-based state ownership management

Our approach: For a given flow, ensuring only one switch processes
packets at a time using leases

RedPlane-
enabled app

Switch-2

External
state store

RedPlane-
enabled app

. =

Switch-1 External state

Red: Switch-2

Lease state
15

Lease-based state ownership management

Our approach: For a given flow, ensuring only one switch processes
packets at a time using leases

RedPlane-)
enabled app . .
Slleh_o Waits UH’[.I| the current
lease expires

External

state store
RedPlane-

enabled app

Switch-1 External state

Red: Switch-2

Lease state
15

Lease-based state ownership management

Our approach: For a given flow, ensuring only one switch processes
packets at a time using leases

RedPlane-
enabled app

Switch-2

External
state store
RedPlane- z

enabled app

Switch-1 External state

Red: Switch-1

Lease state
15

Challenge 3: Handling high traffic volume

Switch data plane operates at up to a few billion packets per second

High performance overhead ®

External
state store

Unable to keep up with high
replication request rate ®

RedPlane-

enabled app

T——

Challenge 3: Handling high traffic volume

Switch data plane operates at up to a few billion packets per second

Lease-based state management allows
local reads for read-centric apps

RedPlane-

p e&b'i‘iﬁﬂp External
state store

“Bounded-inconsistency mode”
for write-centric applications

Putting it all together

RedPlane provides a fault-tolerant state store abstraction to applications

Sequencing and lightweight retransmission mechanism
(Correctness)

Lease-based state management
(Routing agnostic, Performance)

RedPlane-
enabled app

—~—— External

RedPlane protocol
state store

Linearizability-based correctness definition (Correctness)
Bounded-inconsistency for write-centric applications (Correctness, Performance)

Outline

Results

Implementation

P4 modules Six switches (2 programmable, 4 regular)
{ and 10 commodity servers

. P +RedPlane
App code| | P4 AP

Developer
P {}{é!ﬁ} P4 Compiler

RedPlane-
enabled app

e A

External
state store

RedPlane protocol

Various P4 applications for evaluation Replicated state store
on servers in C++

How does RedPlane affect application latency?

State initialization overhead (once per flow)

0.8
L, 0.6
a
~ 04 .
‘ e=Switch-NAT (w/o FT)
0.2 «==RedPlane-NAT
0 Server FT-NAT
1 10 100

Latency (us)

How much BW overhead does RedPlane add?

—
o
o

nN Hh O O
o o O O

BW consumption (%)

)

NAT Firewall Load balancer EPC-SGW Sync-Counter
M Original packets

M RedPlane requests M RedPlane responses

21

How fast the connectivity can be recovered?

100 ==Baseline (no failure) ==Failure ==Failure+RedPlane

@)
)

o))
o

Switch-1 recovered

Switch-1 failed

N
o

)

Throughput (Gbps)
N
o

0 10 20 30 40 50 60
Time (sec)

22

Other results

Throughput of RedPlane-enabled applications
Low switch resource overhead of reliable replication protocol
Less than 13% of switch ASIC resource usage

Model checking for RedPlane protocol by using TLA+

Future directions

Better support for write-centric apps
Supporting non-partitionable states
Automatically enabling fault-tolerance with compiler/language support

Next generation switch architectures for fault-tolerance

Conclusions

Switch failures can affect the correctness of stateful in-switch apps

RedPlane provides a fault-tolerant state store abstraction
. Linearizability-based practical correctness definition for in-switch apps
. Bounded inconsistency mode for write-centric apps
. Sequencing and lightweight retransmission for reliable replication
. Lease-based state ownership management

Offers fault tolerance with minimal performance and resource overhead
. No per-packet latency overhead for read-centric apps
. End-to-end connectivity is recovered within a second

O github.com/daehyeok-kim/redplane-public

