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For years, PostgreSQL’s “SERIALIZABLE” mode 
did not provide true serializability

• instead: snapshot isolation – allows anomalies

PostgreSQL 9.1: Serializable Snapshot Isolation

• based on recent research [Cahill, SIGMOD ’08]

• first implementation in a production DB release 
& first in a purely-snapshot DB
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This talk....

• Motivation: Why serializability? 
                  Why did we choose SSI?

• Review of snapshot isolation and SSI

• Implementation challenges & optimizations

• Performance
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Serializability vs. Performance

Two perspectives:

• Serializability is important for correctness

• simplifies development; 
don’t need to worry about race conditions

• Serializability is too expensive to use

• locking restricts concurrency; 
use weaker isolation levels instead
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Serializability vs. Performance
(in PostgreSQL)

PostgreSQL offered snapshot isolation instead

• better performance than 2-phase locking
“readers don’t block writers, writers don’t block readers”

• but doesn’t guarantee serializability!

Snapshot isolation isn’t enough for some users

• complex databases with strict integrity requirements,
e.g. Wisconsin Court System
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Serializability vs. Performance
(in PostgreSQL)

PostgreSQL offered snapshot isolation instead

• better performance than 2-phase locking
“readers don’t block writers, writers don’t block readers”

• but doesn’t guarantee serializability!

Snapshot isolation isn’t enough for some users

• complex databases with strict integrity requirements,
e.g. Wisconsin Court System

Serializable Snapshot Isolation
offered true serializability with 

performance benefits of snapshot isolation!
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Serializable Snapshot Isolation

SSI approach:

• run transactions using snapshot isolation

• detect conflicts between transactions at runtime;
abort transactions to prevent anomalies

Appealing for performance reasons

• aborts less common than blocking under 2PL

• readers still don’t block writers!

[Cahill et al. Serializable Isolation for Snapshot Databases, SIGMOD ’08]
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SSI in PostgreSQL

Available in PostgreSQL 9.1; 
first production implementation

Contributions: new implementation techniques

• Detecting conflicts in a purely-snapshot DB

• Limiting memory usage

• Read-only transaction optimizations

• Integration with other PostgreSQL features
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Outline

• Motivation

• Review of snapshot isolation and SSI

• Implementation challenges & optimizations

• Performance

• Conclusions

Tuesday, August 28, 2012



Goal: 
  ensure at least one
  guard always on-duty

guard on-duty?on-duty?

Alice y

Bob y
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BEGIN

SELECT count(*) 
FROM guards
WHERE on-duty = y

if > 1 {
   UPDATE guards
   SET on-duty = n
   WHERE guard = x
}

COMMIT
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guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*) 
FROM guards
WHERE on-duty = y
         [result = 2]
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SSI Approach

Detect these rw-conflicts and maintain a 
conflict graph
Serializability theory: each anomaly 
involves two adjacent rw-conflict edges

• if found, abort some involved transaction

• note: can have false positives
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T2

rw-conflict:
T1 didn’t see
T2’s UPDATE

T1

rw-conflict:
T2 didn’t see
T1’s UPDATE

two adjacent edges: 
T1 -> T2 and T2 -> T1

X
ERROR:  could not serialize access due to 

read/write dependencies among transactions
HINT:  The transaction might succeed if retried.
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Outline
• Motivation

• Review of snapshot isolation and SSI

• Implementation challenges & 
optimizations

• Performance

• Conclusions
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SSI in PostgreSQL

Implementation challenges:

• Detecting conflicts in a purely-snapshot DB

• requires new lock manager

• Reining in potentially-unbounded memory usage
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Detecting Conflicts
How to detect when an update conflicts 
with a previous read?
Previous SSI implementations:
reuse read locks from existing lock mgr
But...

• PostgreSQL didn’t have read locks!

• ...let alone predicate locks
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SSI Lock Manager 

Needed to build a new lock manager
to track read dependencies

• Uses multigranularity locks, index-range locks

• Doesn’t block, just flags conflicts 
=> no deadlocks

• Locks need to persist past transaction commit
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Memory Usage
Need to keep track of transaction readsets 
+ conflict graph

• not just active transactions; also
committed ones that ran concurrently

• one long-running transaction can cause 
memory usage to grow without bound

Could exhaust shared memory space 
(esp. in PostgreSQL)
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Read-Only Transactions
Many long-running transactions are read-only; 
optimize for these

Safe snapshots: cases where r/o transactions 
can never be a part of an anomaly

• can then run using regular SI w/o SSI overhead

• but: can only detect once all concurrent r/w 
transactions complete

Deferrable transactions: delay execution to 
ensure safe snapshot
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Graceful Degradation
What if we still run out of memory?

Don’t want to refuse to accept new transactions

Instead: keep less information 
(tradeoff: more false positives)

• keep less state about committed transactions

• deduplicate readsets: “read by some committed 
transaction”
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Outline

• Motivation

• Review of snapshot isolation and SSI

• Implementation challenges & optimizations

• Performance

• Conclusions
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Performance

TPC-C-derived benchmark;
modified to have SI anomalies
Varied fraction of r/o and r/w transactions
Compared PostgreSQL 9.1’s SSI 
against SI, and an implementation of S2PL
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Performance (in-memory)
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Performance (disk)
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Conclusion
SSI available now in PostgreSQL 9.1

• true serializability without blocking

• new lock manager to track read dependencies

• optimizations for read-only transactions

Performance close to that of SI

• outperforms S2PL on read-heavy workloads

• makes serializable mode a more practical 
option for some users
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