
Serializable Snapshot Isolation
in PostgreSQL

Dan Ports
University of Washington

MIT

Kevin Grittner
Wisconsin Supreme Court

Tuesday, August 28, 2012

For years, PostgreSQL’s “SERIALIZABLE” mode
did not provide true serializability

• instead: snapshot isolation – allows anomalies

PostgreSQL 9.1: Serializable Snapshot Isolation

• based on recent research [Cahill, SIGMOD ’08]

• first implementation in a production DB release
& first in a purely-snapshot DB

Tuesday, August 28, 2012

This talk....

• Motivation: Why serializability?
 Why did we choose SSI?

• Review of snapshot isolation and SSI

• Implementation challenges & optimizations

• Performance

Tuesday, August 28, 2012

Serializability vs. Performance

Two perspectives:

• Serializability is important for correctness

• simplifies development;
don’t need to worry about race conditions

• Serializability is too expensive to use

• locking restricts concurrency;
use weaker isolation levels instead

Tuesday, August 28, 2012

Serializability vs. Performance
(in PostgreSQL)

PostgreSQL offered snapshot isolation instead

• better performance than 2-phase locking
“readers don’t block writers, writers don’t block readers”

• but doesn’t guarantee serializability!

Snapshot isolation isn’t enough for some users

• complex databases with strict integrity requirements,
e.g. Wisconsin Court System

Tuesday, August 28, 2012

Serializability vs. Performance
(in PostgreSQL)

PostgreSQL offered snapshot isolation instead

• better performance than 2-phase locking
“readers don’t block writers, writers don’t block readers”

• but doesn’t guarantee serializability!

Snapshot isolation isn’t enough for some users

• complex databases with strict integrity requirements,
e.g. Wisconsin Court System

Serializable Snapshot Isolation
offered true serializability with

performance benefits of snapshot isolation!
Tuesday, August 28, 2012

Serializable Snapshot Isolation

SSI approach:

• run transactions using snapshot isolation

• detect conflicts between transactions at runtime;
abort transactions to prevent anomalies

Appealing for performance reasons

• aborts less common than blocking under 2PL

• readers still don’t block writers!

[Cahill et al. Serializable Isolation for Snapshot Databases, SIGMOD ’08]
Tuesday, August 28, 2012

SSI in PostgreSQL

Available in PostgreSQL 9.1;
first production implementation

Contributions: new implementation techniques

• Detecting conflicts in a purely-snapshot DB

• Limiting memory usage

• Read-only transaction optimizations

• Integration with other PostgreSQL features

Tuesday, August 28, 2012

Outline

• Motivation

• Review of snapshot isolation and SSI

• Implementation challenges & optimizations

• Performance

• Conclusions

Tuesday, August 28, 2012

Goal:
 ensure at least one
 guard always on-duty

guard on-duty?on-duty?

Alice y

Bob y

Tuesday, August 28, 2012

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = x
}

COMMIT

Goal:
 ensure at least one
 guard always on-duty

guard on-duty?on-duty?

Alice y

Bob y

Tuesday, August 28, 2012

guard on-duty?on-duty?

Alice y

Bob y

Tuesday, August 28, 2012

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

Tuesday, August 28, 2012

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

Tuesday, August 28, 2012

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ‘Alice’
}
COMMIT

Tuesday, August 28, 2012

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ‘Alice’
}
COMMIT

n

Tuesday, August 28, 2012

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guards = ‘Bob’
}
COMMIT

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ‘Alice’
}
COMMIT

n

Tuesday, August 28, 2012

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guards = ‘Bob’
}
COMMIT

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ‘Alice’
}
COMMIT

n

n

Tuesday, August 28, 2012

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guards = ‘Bob’
}
COMMIT

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ‘Alice’
}
COMMIT

n

n

Tuesday, August 28, 2012

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guards = ‘Bob’
}
COMMIT

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ‘Alice’
}
COMMIT

n

n

rw-conflict:
T1 didn’t see
T2’s UPDATE

Tuesday, August 28, 2012

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guards = ‘Bob’
}
COMMIT

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ‘Alice’
}
COMMIT

n

n

rw-conflict:
T1 didn’t see
T2’s UPDATE

rw-conflict:
T2 didn’t see
T1’s UPDATE

Tuesday, August 28, 2012

SSI Approach

Detect these rw-conflicts and maintain a
conflict graph
Serializability theory: each anomaly
involves two adjacent rw-conflict edges

• if found, abort some involved transaction

• note: can have false positives

Tuesday, August 28, 2012

T2

rw-conflict:
T1 didn’t see
T2’s UPDATE

T1

rw-conflict:
T2 didn’t see
T1’s UPDATE

two adjacent edges:
T1 -> T2 and T2 -> T1

Tuesday, August 28, 2012

T2

rw-conflict:
T1 didn’t see
T2’s UPDATE

T1

rw-conflict:
T2 didn’t see
T1’s UPDATE

two adjacent edges:
T1 -> T2 and T2 -> T1

X
Tuesday, August 28, 2012

T2

rw-conflict:
T1 didn’t see
T2’s UPDATE

T1

rw-conflict:
T2 didn’t see
T1’s UPDATE

two adjacent edges:
T1 -> T2 and T2 -> T1

X
ERROR: could not serialize access due to

read/write dependencies among transactions
HINT: The transaction might succeed if retried.

Tuesday, August 28, 2012

Outline
• Motivation

• Review of snapshot isolation and SSI

• Implementation challenges &
optimizations

• Performance

• Conclusions

Tuesday, August 28, 2012

SSI in PostgreSQL

Implementation challenges:

• Detecting conflicts in a purely-snapshot DB

• requires new lock manager

• Reining in potentially-unbounded memory usage

Tuesday, August 28, 2012

Detecting Conflicts
How to detect when an update conflicts
with a previous read?
Previous SSI implementations:
reuse read locks from existing lock mgr
But...

• PostgreSQL didn’t have read locks!

• ...let alone predicate locks

Tuesday, August 28, 2012

SSI Lock Manager

Needed to build a new lock manager
to track read dependencies

• Uses multigranularity locks, index-range locks

• Doesn’t block, just flags conflicts
=> no deadlocks

• Locks need to persist past transaction commit

Tuesday, August 28, 2012

Memory Usage
Need to keep track of transaction readsets
+ conflict graph

• not just active transactions; also
committed ones that ran concurrently

• one long-running transaction can cause
memory usage to grow without bound

Could exhaust shared memory space
(esp. in PostgreSQL)

Tuesday, August 28, 2012

Read-Only Transactions
Many long-running transactions are read-only;
optimize for these

Safe snapshots: cases where r/o transactions
can never be a part of an anomaly

• can then run using regular SI w/o SSI overhead

• but: can only detect once all concurrent r/w
transactions complete

Deferrable transactions: delay execution to
ensure safe snapshot

Tuesday, August 28, 2012

Graceful Degradation
What if we still run out of memory?

Don’t want to refuse to accept new transactions

Instead: keep less information
(tradeoff: more false positives)

• keep less state about committed transactions

• deduplicate readsets: “read by some committed
transaction”

Tuesday, August 28, 2012

Outline

• Motivation

• Review of snapshot isolation and SSI

• Implementation challenges & optimizations

• Performance

• Conclusions

Tuesday, August 28, 2012

Performance

TPC-C-derived benchmark;
modified to have SI anomalies
Varied fraction of r/o and r/w transactions
Compared PostgreSQL 9.1’s SSI
against SI, and an implementation of S2PL

Tuesday, August 28, 2012

Performance (in-memory)

0.4x

0.5x

0.6x

0.7x

0.8x

0.9x

1.0x

0% 20% 40% 60% 80% 100%

SI
SSI
SSI (no r/o opt.)
S2PL

25 warehouses (3 GB), tmpfs

trans. rate
(normalized)

Fraction of read-only transactions

Tuesday, August 28, 2012

Performance (disk)
150 warehouses (19 GB)

trans. rate
(normalized)

Fraction of read-only transactions

0.4x

0.5x

0.6x

0.7x

0.8x

0.9x

1.0x

0% 20% 40% 60% 80% 100%

SI
SSI
S2PL

Tuesday, August 28, 2012

Conclusion
SSI available now in PostgreSQL 9.1

• true serializability without blocking

• new lock manager to track read dependencies

• optimizations for read-only transactions

Performance close to that of SI

• outperforms S2PL on read-heavy workloads

• makes serializable mode a more practical
option for some users

Tuesday, August 28, 2012

