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Abstract

The expressiveness of traditional syntactic pattern
matching is severely limited by its lack of abstrac-
tion. Because syntax patterns are mired in the built-
in types understood by the pattern matching system,
they lack the ability to express patterns over abstract
data types (ADT’s). More advanced pattern matching
techniques, such as semantic matching, can overcome
this, but at the per-ADT cost of the complex code re-
quired to add new pattern combinators to the system.

Plaid defines a new pattern language that captures
a strict subset of Scheme capable of both regular com-
putation, as well as reverse computation. This al-
lows it to overcome both the limitations of syntactic
patterns and the cost of semantic patterns by provid-
ing a means by which programmers can write a single
specification of the mapping between the abstract and
concrete representations of an ADT that simultane-
ously serves as constructor, predicate, accessor, and
pattern combinator for that ADT. This specification
is written virtually identically to how a regular con-
structor would be written.

Furthermore, the Plaid pattern language is capable
of capturing non-determinism and decisions within
pattern matching, thus admitting a very broad inter-
pretation of what can be considered an ADT construc-
tor. This leads to variety of interesting capabilities,
such as the ability to view concrete data in multi-
ple abstract ways, the ability to canonicalize multiple
concrete representations in one abstract way, and the
ability to imagine more convenient representations of
existing data.

1 Introduction

Syntactic pattern matching is a classical component
of symbolic programming. Unfortunately, its expres-
siveness is limited by its lack of abstraction. Many
languages typically used for symbolic programming,
such as Scheme, have non-extensible type systems,

( define (make−computer model os )
( l i s t ’ ∗computer∗ os model ) )

( define ( computer? datum)
(and ( pa i r ? datum)

( eq? ( car datum) ’ ∗computer∗ ) ) )
( define computer−model th i r d )
( define computer−os second )

Figure 1: A simple ADT representing a computer

meaning that abstract data types exist merely as
user-enforced contracts. Since syntax patterns are
limited to the concrete data representations under-
stood by the pattern matching mechanism (which
typically do not extend beyond the built-in types of
the language), such systems have no means of ex-
pressing patterns over abstract data representations.
Pattern matching on abstract data types requires vi-
olating the abstraction barrier and using the concrete
representation of the type.

For example, consider the simple ADT presented in
Figure 1. In order to use a computer instance in pat-
tern matching, for example to test whether or not a
computer is running Linux, a programmer would have
to violate the abstraction barrier and write something
in terms of the concrete representation, such as

(match computer ’(∗computer∗ linux ))

Semantic pattern matching can potentially allevi-
ate this problem by providing a means of extension
by which implementations of abstract data types can
provide custom match combinators that expose only
abstract representations. Figure 2 demonstrates an
implementation of a computer combinator for the se-
mantic pattern system used in Adventures in Ad-
vanced Symbolic Programming. However, as can be
seen from the figure, this vastly complicates the im-
plementation of an abstract data type without fun-
damentally extending its power.

All of the information about the mapping between
the abstract representation and the concrete repre-

1



( define (match : computer? pattern )
(and ( pa i r ? pattern )

( eq? ( car pattern ) computer ) ) )
( define match : computer−model second )
( define match : computer−os th i r d )

( define (match : computer model−comb os−comb)
( define (match data d i c t i ona r y succeed )

(and ( computer? data )
(model−comb
( computer−model data ) d i c t i ona r y
(lambda ( new−dict n)

(os−comb
( computer−os data ) new−dict
succeed ) ) ) ) )

match )

( define ( compile−match−computer
pat use−env loop )

‘ ( match : computer
, ( loop (match : computer−model pat ) )
, ( loop (match : computer−os pat ) ) ) )

( eq−put! computer ’ pattern−keyword
compile−match−computer)

Figure 2: Implementation of a semantic matching
combinator for the computer ADT

sentation is already captured by the type’s construc-
tor. Thus, any additional code required to inform
the pattern matching system of how to handle the
abstract representation of a type is redundant with
the information already contained in the construc-
tor. In fact, even the typical predicate and accessor
functions associated with an abstract data type can
be considered a duplication of the knowledge already
expressed in the constructor.

In Scheme’s evaluation model, abstract data con-
structors work by eventually reducing to combina-
tions of concrete data constructors. Thus, when used
under Scheme’s evaluation rules, an abstract data
constructor will eventually produce some concrete
data structure. However, many of the forms of combi-
nation that produce the concrete data structure can
be run in reverse, using the constructor’s own code
as a specification of how to deconstruct the results of
the abstract constructor.

Plaid builds a new type of pattern matching system
around this notion of reversible computation. We in-
troduce a pattern syntax and pattern matching model
that can express patterns in terms of abstract repre-
sentations. This pattern language is symmetric, al-
lowing a single expression to run either forward or
in reverse, so it can be used either to construct or
to deconstruct. This pattern language is also expres-

sive enough to capture branching control flow (in the
forward direction) and non-determinism (in the re-
verse direction), allowing it to express not only classi-
cal abstract data type constructors, but constructors
that alter their behavior depending on their inputs.
This allows Plaid patterns to the take advantage of
the reversibility of computations like append; to view
myriad concrete representations in abstract, canoni-
cal ways; and to imagine multiple abstract represen-
tations for a single concrete representation.

Section 2 describes the pattern language and pat-
tern matching model introduced by Plaid and ad-
dresses its implications for pattern matching in the
presence of abstract data types as well as non-
determinism. Section 3 discusses the pattern match-
ing algorithm required to capture the capabilities of
the language. Finally, Section 4 covers our implemen-
tation of the pattern system.

2 Pattern Language

Plaid integrates a new pattern-matching language
into Scheme. It introduces a new constructor-
oriented pattern syntax to support patterns ex-
pressed in terms of abstract data types. The pattern
language is embedded in Scheme as two new special
forms supporting pattern abstraction and pattern in-
stantiation. Control flow and non-determinism within
patterns is supported by embedding the pattern in-
stantiation special form into the pattern language it-
self.

2.1 Constructor-Oriented Pattern

Syntax

Traditional syntactic patterns are written in a data-
oriented syntax. This syntax reflects the syntax of
reader/printer in the language, but allows for holes
in the representation in the form of pattern variables.
For example, to match a list of two elements whose
first element is the value 1 while capturing the value
of the second element, one would write a pattern such
as

(1 (? x))

This pattern is itself a list of two elements, whose first
element is a 1. Its only structural difference from the
data it is matching is that it contains the pattern
variable (? x).

Because the representation of data-oriented pat-
terns precisely mirrors the representation of the data
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they are matching, the very syntax of such patterns
limits them to the concrete types provided by the lan-
guage, such as (in Scheme), atomic types (numbers,
booleans, etc.) and pairs.

Plaid introduces a new syntax for patterns that,
instead of resembling the concrete representation of
the data being matched, resembles the code that
would construct the data being matched. In this
constructor-oriented syntax, the above pattern would
be written as

(cons 1 (cons x ()))

Like in data-oriented patterns, any self-evaluating
form is treated as a pattern literal and must match
the datum exactly in the sense of equal?. Literal sym-
bols can be matched by means of a quote special form
in the pattern language1. Pattern variables are spec-
ified as symbols in the non-first position of a com-
bination. Finally, the special symbol indicates a
wildcard or “don’t-care” pattern.

In order to equal the power of syntactic patterns,
the pattern language supports a basis set of funda-
mental deconstructors. Each built-in compound data
type has a corresponding fundamental deconstructor
(in Scheme, this consists only of pairs, though the
system can easily be extended with new fundamen-
tal deconstructors). A deconstructor is responsible
for checking the type of a datum and recursively pat-
tern matching the components of the datum with the
appropriate sub-patterns.

Data-oriented patterns have implicit deconstruc-
tors. A syntax pattern that contains a pair implicitly
means that the datum must be a pair and that the
car and cdr of the datum must recursively match the
car and cdr of the pattern. Constructor-oriented pat-
terns, on the other hand, make deconstructor names
explicit. The pattern (cons x ()) is a combination,
much like a combination in Scheme. The name cons

in the first position corresponds to the fundamental
deconstructor for pairs (assuming the binding of the
name cons hasn’t been shadowed). This indicates that
the pattern only matches pairs whose car matches the
first argument to cons and whose cdr matches the sec-
ond argument to cons.

Explicitly named deconstructors naturally lead to
the addition of abstract or compound deconstructors
to the pattern language. In Scheme, an abstract con-
structor works by ultimately reducing to some combi-
nation of built-in constructors that give the abstract

1Unlike Scheme’s quote, Plaid’s quote is currently re-
stricted to symbols, but could be generalized

data type is concrete representation. We can do the
same thing for deconstructors: provide the mecha-
nism to add a new named deconstructor to the sys-
tem with a set of formal parameters and whose body
is simply a pattern. When this deconstructor is re-
ferred to in a pattern, we can follow in the footsteps
of the substitution model by simply reducing the pat-
tern to the body of the deconstructor with the argu-
ment patterns substituted for the formal arguments.
For example,

(define−constructor ( computer model os )
( l i s t ’ ∗computer∗ os model ) )

defines a compound deconstructor for the computer
ADT, providing a bridge in the pattern language be-
tween the abstract and concrete representations of
this implementation of a computer. When the pat-
tern matching encounters a pattern of the form

(computer ’linux)

it reduces this to the body of the computer deconstruc-
tor, with the argument patterns substituted for the
formals.

 ( list ’∗computer∗ ’linux )

The deconstructor list itself merely reduces to a pat-
tern consisting of applications of cons

 (cons ’∗computer∗ (cons ’linux (cons ())))

This final pattern consists solely of fundamental de-
constructors, and thus can easily be matched against
a concrete datum. The simplified algorithm demon-
strated here for handling compound deconstructors
is overly eager, but forms the conceptual basis for
Plaid’s actual matching algorithm, which will be pre-
sented in Section 3.

2.2 Code–Pattern Duality

Because the pattern language is a strict subset of
Scheme, any valid pattern is simultaneously valid
Scheme code. Due to the syntax and semantics of
the pattern language, the body of a deconstructor
doubles as a perfectly operational definition of a con-
structor. For example, if one treats the definition of
computer given above as a regular procedure defini-
tion and runs it “forward” as regular Scheme code,
it serves as an effective constructor for the computer
ADT. As we saw in the previous section, if we look
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at the body of the definition as a pattern and run it
“backwards”, it serves as a deconstructor.

Thus, this single definition, which captures the
mapping between the abstract and concrete repre-
sentations of the ADT, suffices as the one and only
specification of this mapping – acting at once as con-
structor, predicate, and accessor for the ADT. Fur-
thermore, no specific additions to the pattern system
beyond this single definition are necessary in order to
extend pattern matching to the abstract representa-
tion.

Views When a collection of abstract constructors
share the same concrete representation, it’s possi-
ble to view a given concrete representation in mul-
tiple ways through pattern matching. Essentially,
the mapping between abstract representation and the
concrete representation of an ADT need not be one-
to-one; it can be many-to-one. Because the system is
unaware of how a concrete datum was originally cre-
ated, any of the constructors that could have been
used to create the datum can be used to deconstruct
it, thus admitting any number of abstract views to
be taken of a single piece of data.

2.3 Embedding Patterns in Scheme

Plaid adds two new important special forms (imple-
mented as macros) to the Scheme language – one for
pattern abstraction and one for pattern instantiation.

The first, plambda, creates new compound decon-
structors. Its syntax and semantics are much like
those of lambda, except that the body must consist
of a single, valid pattern. Its value is a procedure that
can be used either as a regular Scheme procedure, or
as a deconstructor in a pattern. Thus,

( define computer
(plambda ( os model )

( l i s t ’ ∗computer∗ model os ) ) )

binds computer to a procedure that, if applied in regu-
lar Scheme code, constructs a new compound datum
representing a computer; and if applied in a pattern,
deconstructs a compound datum as it would a com-
puter.

Just as define has a sugared form for defining
procedures because the creation and naming of a
procedure are so often done together, Plaid has
define−constructor as sugar for the definition of a con-
structor/deconstructor. The desugaring mirrors that
of define, but results in a plambda form in place of
the usual lambda form.

Plaid also introduces a pcase expression, which in-
tegrates pattern matching directly into Scheme’s syn-
tax, control flow, and environment model. The syn-
tax of pcase resembles Scheme’s case expression, but
the conditions are patterns. The exact syntax is

(pcase expr

( pat t e rn expr expr . . . )
( pat t e rn expr expr . . . )
. . . )

pcase first evaluates the expression that precedes
the clauses. The value of this expression is pattern-
matched against the pattern in first clause. If it
matches, then any pattern variables in the pattern
are bound over the scope of the body of the clause
and the body is evaluated. If the match fails, then
the next clause is tried, and so on. In this way, pcase

integrates pattern matching, control flow from the
possible failure of pattern matching, and the projec-
tion of pattern variables into Scheme’s environment.

Plaid diverges from the typical match-function
based interface to pattern matching for a number of
reasons. Beyond the simple convenience of language-
integrated pattern matching, this allows pcase to
interact with the environment model in important
ways. Not only does it allow Plaid to close the gap
between pattern variables and Scheme variables by
making pattern variables available as regular Scheme
variables scoped over the body of the clause, but it
also allows proper lexical scoping of deconstructor
names.

2.4 Control Flow in Patterns

It turns out that pcase is fundamentally more than
merely a convenient way to express pattern matching
in Scheme. By introducing pcase into the pattern lan-
guage as well Scheme, the pattern language remains
a subset of Scheme, but gains the power of control
flow.

This allows us to broaden our definition of a con-
structor beyond simply a direct mapping between an
abstract representation and a concrete representa-
tion. By admitting pcase into the pattern language,
constructors are allowed to make decisions about the
contents of the concrete representation based on the
value of the abstract representation. This leads to
branching control flow in constructors and, symmet-
rically, non-determinism in deconstructors.

Reversible Computation In a pattern language
without control flow, many interesting constructors
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(define−constructor ( lambda∗ args body )
( cons ’lambda ( cons args body ) ) )

(define−constructor ( d e f i n e∗ name expr )
(pcase expr

( ( lambda∗ args body )
( cons ’ define

( cons ( cons name args ) body ) ) )
( ( l i s t ’ define name expr ) ) ) )

Figure 3: Another way of looking at Scheme’s define

are inexpressible. For example, we can now think of
append as simply an abstract constructor for lists. We
could replace Scheme’s standard definition of append

with the following

(define−constructor ( append a b)
(pcase a

( ( ) b )
( ( cons t h i s r e s t )
( cons t h i s ( append r e s t b ) ) ) ) )

Viewed in the forward direction – as regular Scheme
code – this implements a somewhat stylized but per-
fectly operational version of regular append. However,
since this definition of append is also valid in the pat-
tern language, it becomes possible to use append in
reverse. For example,

(pcase ’ (1 2 3 4)
( ( append x ( l i s t 3 4))
x ) )

⇒ (1 2)

Canonicalization Control flow introduces ambi-
guity into the pattern language. Without control
flow, we are limited to mappings from one or more
abstract representations to a single concrete represen-
tation. Control flow in the pattern language allows
us to describe a mapping from multiple concrete rep-
resentations to one abstract representation, allowing
us to canonicalize data and to program in terms of
unified abstract representations.

For example, Figure 3 shows how one could canon-
icalize a subset of Scheme’s syntax consisting of
lambda, define, and the sugared form of define. The
“concrete representation” in this example is a Scheme
abstract syntax tree, while the “abstract representa-
tion” is a canonicalized form consisting of the ab-
stract lambda∗ and the abstract define∗, but not an
equivalent to the sugared form of define.

With these we could, for example, start writing an
eval dispatch like the one presented in SICP that relies

on patterns for predication, sub-expression selection,
as well as desugaring:

( define ( eva l exp env )
(pcase exp

( ( lambda∗ args body )
(make−procedure args body env ) )

( ( d e f i n e∗ var va l )
( d e f i n e−va r i ab l e ! var ( eva l va l env ) env ) )

. . . ) )

Imagination Because pcase in the pattern lan-
guage introduces non-determinism into pattern
matching, it may be possible to find multiple valid
instantiations of a pattern. The ability to explore
multiple instantiations is critical to the matching al-
gorithm, as will be discussed in Section 3.4. pcase in
Scheme directly exposes this to the user in the form
continuation called next that can be invoked to try
another satisfying assignment of pattern variables. If
there are no more possibilities for the current clause,
this continues to the next clause. The ability to try
other assignments leads to the possibility of imagin-
ing multiple abstract ways of looking at one concrete
representation.

For example, we can write the following construc-
tor for multiplying two expressions,

(define−constructor ( ∗∗ x y )
(pcase x

(1 y )
( (pcase y

(1 x )
( ( l i s t ’ ∗ x y ) ) ) ) ) )

When used in a pattern, the ∗∗ deconstructor lets us
look at something that is not a multiplication as a
multiplication by 1. For example, we can imagine
(+ x y) as a multiplication with

(pcase ’ (+ x y)
( ( ∗∗ a b) ( l i s t ’mul a ’ by b ) ) )

⇒ (mul 1 by (+ x y ) )

On the other hand, if we try to imagine (∗ x y) as
a multiplication, the pattern matcher will first dis-
cover that we can multiply this by 1 to view it as a
multiplication. While true, this is not useful, so we
can use the next continuation to ask for other ways of
imagining it.

(pcase ’ ( ∗ x y )
( ( ∗∗ a b)
( i f (or ( eqv? a 1) ( eqv? b 1))

( next )
( l i s t ’mul a ’by b ) ) ) )

⇒ (mul x by y )
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3 Matching Algorithm

The new pattern language described above requires
a substantially different matching algorithm than a
typical pattern matcher because of the complexities
of abstraction and control flow in patterns. Here, we
present an algorithm that allows patterns in the Plaid
pattern language to be matched.

3.1 Matching Requires Unification

Though a traditional pattern matcher appears to suf-
fice for matching Plaid patterns, in fact unification is
necessary. Unification is the generalization of pattern
matching in which both arguments may contain pat-
terns. Indeed, since unification is symmetric, both
arguments can be referred to as patterns rather than
a pattern and a datum.

To see why unification is required, consider again
the example of append:

(define−constructor ( append a b)
(pcase a

( ( ) b )
( ( cons t h i s r e s t )
( cons t h i s ( append r e s t b ) ) ) ) )

The second clause requires both that a can be ex-
pressed as a cons of this and rest, and that b can be
expressed as a cons of this and a append call, or in
other words that this is the first element of both a

and the datum. Because a pcase expression can place
multiple requirements on a variable, such as this in
this example, unification is necessary to ensure that
a satisfactory assignment is found, if one exists.

3.2 Basic Unification

The basis for our unification algorithm is the one from
SICP. It takes two patterns as an input, along with
a unifier environment. The unifier environment con-
tains a set of bindings from variable names to their
values. (In Section 3.4, we extend the unifier envi-
ronment to also include a failure continuation.) The
unifier returns a new environment containing all the
bindings from the initial environment, plus any new
bindings that needed to be added to make the two
patterns equivalent. Note that a pattern variable may
be bound to an expression containing other variables,
in order to express a dependency between variables.

The most basic set of unification rules is shown in
Table 1, for a pattern language consisting entirely of
literals, wildcards, and variables (i.e. no deconstruc-
tors or choices). Two literals unify if they are identi-

Condition Rule

Both literals? Succeed if same literal
Either wildcard? Succeed
Either variable? Add binding if consistent
One literal? Fail

Table 1: Basic unification rules

cal, and wildcards unify with anything. When either
one of the patterns is a variable, the environment
is extended, binding that variable to the other pat-
tern, if possible. If the variable already has a value,
the old value is unified with the proposed new value,
which may cause unification to fail, or which may
cause other variables to become bound.

3.3 Unifying Deconstructors

The pattern language from the previous section is
not particularly interesting, since it does not include
support for deconstructors, even fundamental ones
like cons. Unification of fundamental deconstructors
is straightforward. Two fundamental deconstructors
unify if they are of the same type (e.g. they are both
conses), and if each argument unifies with its corre-
sponding argument on the other side.

Unification of compound deconstructors, the anal-
ogous operation to application in an evaluator, pro-
ceeds as follows. The body of the deconstructor is
unified against the datum, with argument names α-
renamed in order to avoid conflicts with other uses
of the same compound deconstructor. In the envi-
ronment that results from this unification, each of
the α-renamed argument names is unified against the
pattern from the original application of the decon-
structor. An example is shown in Figure 4.

An alternate approach to compound deconstructor
unification uses β-substitution instead of α-renaming
to handle arguments. Rather than unifying the body
of the deconstructor with the datum and then unify-
ing the argument names with their values, we could
instead substitute the appropriate argument value
wherever the corresponding name appears in the de-
constructor body, and unify the resulting expression
against with the datum. Though the two alterna-
tives are clearly semantically equivalent, we opted
for the α-renaming-and-unification strategy because
β-substitution could be more computationally inten-
sive if a complex expression needs to be substituted
into an expression in multiple places.
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( define (make−computer model os )
( cons ’ ∗computer∗

( cons os ( cons model ( ) ) ) ) )

1. ( un i f y (make−computer x ’ l i nux )
( cons ’ ∗computer∗

( cons ’ l i nux ( cons ’ pc ( ) ) ) ) )

2. ( un i f y ( cons ’ ∗computer∗
( cons os ( cons model ( ) ) ) )

( cons ’ ∗computer∗
( cons ’ l i nux ( cons ’ pc ( ) ) ) ) )

=⇒ os← linux; model← pc

3. ( un i f y model x )

=⇒ x← pc

4. ( un i f y os ’ l i nux )

Figure 4: Example of compound deconstructor unifi-
cation. A compound deconstructor is unified against
a datum consisting of cons fundamental deconstruc-
tors (1). To perform this unification, first the decon-
structor body is unified against the datum, yielding
bindings for the formal arguments (2). Next, each
of the formal arguments is unified against its corre-
sponding parameter from the call to the deconstruc-
tor (3 & 4). α-renaming of parameter names is not
shown.

3.4 Nondeterministic Unification

Unification becomes fundamentally different once the
ability to make choices is introduced into the pattern
language. For example, the expression

(pcase x
(1 ’ a )
( ’b ) )

could be equal to either ’a or ’b if x = 1. At the time
the pcase is encountered, it is not possible to deter-
mine which value it should take, since a later unifica-
tion might force that choice to be reconsidered. For
example, we might unify a variable y with the pcase

expression above, choosing ’a for the value of y, and
later learn that that choice was incorrect by unifying
y with ’b. This requires control flow backtracking,
since the value of y might have been used to make
decisions in the meantime.

To address this challenge, we expand the defini-
tion of a unifier environment slightly: in addition
to a set of variable bindings, it may now include a

failure continuation that can be called in the event
that a dependent unification fails in the future. Call-
ing this failure continuation expresses the notion that
no consistent unification is possible using the current
variable bindings, and requests another possible vari-
able assignment. Control is backtracked to the pre-
vious pcase pattern, and the next clause in sequence
is tried. Of course, it is possible for unification of the
pcase to fail, in which case its failure continuation
is called, perhaps causing another control flow back-
tracking. The root failure continuation simply causes
the most recent call to the unifier to return #f. It is
used when no consistent unification environment can
be found, such as when no choices have been made
during unification (e.g. during the unification of an
expression that contains no pcase clauses) or if every
pcase clause has led to a unification failure.

As a result of this backtracking, unification be-
comes a search problem. It can be viewed as search-
ing the space of possible pcase choices for an assign-
ment that allows unification to proceed. As a result,
search techniques such as dependency-directed back-
tracking can be applied.

4 Implementation

Plaid is implemented atop Scheme as an elegant set
of macros and procedures; it does not require any
changes to the underlying Scheme evaluator. The ma-
jor components of the implementation are a represen-
tation for patterns and mechanism for constructing
them, described in Section 4.1; constructs for defin-
ing new constructors and deconstructors, described
in Section 4.2; and a unifier that performs the actual
pattern matching, described in Section 4.3.

4.1 Abstract Pattern Structure

Patterns are represented internally by a set of ab-
stract data types representing the different pattern
structures: literals, variables, wildcards, deconstruc-
tors, and pcases. The unifier operates solely on these
data types.

The abstract pattern structure can be generated
in two ways. First, a pattern compiler operates on
syntactic expressions at macro-expansion time. For
example, it converts (cons 1 (cons a ())) into the ab-
stract structure shown in Figure 5. This compiler is
used, for example, to build the appropriate patterns
from the arguments to a pcase expression. Second,
the constructorifier operates on data at runtime. It
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( pattern : decons tructo r
(lambda ( )

( constructor− >decons tructor cons ) )
( l i s t
( pattern : l i t e r a l 1)
( pattern : decons tructor
( lambda ( )

( constructor− >decons tructor cons ) )
( l i s t ( pattern : va r i ab l e a )

( pattern : l i t e r a l ( ) ) ) ) ) )

Figure 5: Example of abstract pattern structure

converts data — pairs, symbols, numbers, etc. — to
the same abstract representation. For example, the
list (1 a) also translates into the abstract structure of
Figure 5.

Using the same representation for both patterns
and data reflects the duality between constructors
and deconstructors described in Section 2.1. A da-
tum is represented in exactly the same way as the
expression that produces it. This symmetry makes
the unifier elegant, since it operates on two arguments
that have the same form, rather than a pattern and
datum with different structure.

4.2 plambda and define-constructor

Plaid integrates a new constructor, plambda, into
Scheme as a macro. Like lambda in Scheme, the
plambda macro returns a Scheme procedure, but in
addition, plambda binds the newly created procedure
to a compound deconstructor using an eq-hash ta-
ble. The compound deconstructor includes a list of
formals and the pattern-compiled version of the pro-
cedure body. A procedure created by plambda is ex-
actly the same as a procedure returned by a lambda

when used in normal Scheme code, however the pro-
cedure is also valid pattern syntax. When the pro-
cedure occurs in a pattern, the corresponding decon-
structor is retrieved and used for matching the pat-
tern.

Because the constructor-to-deconstructor mapping
is stored in the hash table using the procedure as
its identifier, the procedure itself serves as the iden-
tifier of the deconstructor. At compile-time, a de-
constructor record is created containing a thunk that
looks up the deconstructor associated with the name
at runtime. This means that deconstructor names
inherit the scoping properties of normal Scheme vari-
ables, since the deconstructor name is resolved by
Scheme according to the environment model, and the

( define ( un i fy p1 p2 env )
(cond ( ( both? patte rn : l i t e r a l ? )

( i f ( eq? ( patte rn : l i t e r a l / va lue p1 )
( patte rn : l i t e r a l / va lue p2 ) )

env
( ( un i f i e r−envi ronment/ f a i l env ) ) ) )

( ( e i t h e r ? patte rn : wi ldcard? ) env )
( ( e i t h e r ? patte rn : v a r i a b l e ? )
=> (w/ l (lambda ( var other )

( extend− i f−poss ib l e
var other env ) ) ) )

( ( e i t h e r ? patte rn : l i t e r a l ? )
( ( un i f i e r−envi ronment/ f a i l env ) ) )

( e l s e ( e r r o r ”Don ’ t know how to un i fy ”
p1 p2 ) ) ) )

Figure 6: Core unifier code, implementing basic uni-
fication (without deconstructors or pcases)

constructor-to-deconstructor mapping is automatic.
A define−constructor macro is introduced to pro-

vide syntactic sugar for the common operation of cre-
ating a constructor and binding it to a name. In much
the same way as define can create an implicit lambda

and bind it to a name, define−constructor can do the
same with a plambda.

4.3 Unification

In order to perform pattern matching, Plaid employs
a unifier as described in Section 3. The unifier op-
erates on the abstract pattern structures described
in Section 4.1 as well as unifier-environment struc-
tures that contain a set of variable bindings and a
failure continuation. The unifier takes two patterns
and an initial environment, and returns either a new
environment with the necessary bindings to make the
patterns unify, or #f if no unification is possible.

A simplified version of the core unifier code is
shown in Figure 6. The unifier is implemented in
a data-directed style, testing the types of its input
patterns and applying an appropriate rule.2 Unifi-
cation of fundamental and compound deconstructors
proceeds as described in Section 3.3.

4.3.1 Nondeterminism and Backtracking

To introduce nondeterminism into the uni-
fier to support pcase patterns, we use
call−with−current−continuation in much the same
way one might use it to implement McCarthy’s

2The data-directed style of the unifier suggests replacing
the monolithic cond statement with a dispatch table to im-
prove additivity. Though it is a useful strategy in general, we
rejected this approach here because the order of rule evaluation
is critical and we wanted to make this explicit.
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amb operator. Upon encountering a pcase pattern,
the unifier captures its current continuation using
call−with−current−continuation, installs it in the
unifier environment, and proceeds to unify the
consequent against the datum and the condition
against the variable. If either of these unifications,
or another unification in the future fails, the failure
continuation is invoked and control flow returns to
the pcase unification. The unifier then tries the next
clause, or recursively invokes its failure continuation
if no clauses remain.

If necessary, a root failure continuation is installed
as the first step to a call to unify. Specifically, the
unifier checks whether the input environment already
includes a failure continuation. If it does not (repre-
sented by the symbol cant−fail), the unifier creates a
new failure continuation that, when invoked, causes
the current call to unify to return #f. It then pro-
ceeds with unification, using this new failure contin-
uation. After unification is completed, the unifier
checks whether one of its unification steps created a
new failure continuation (e.g. if a pcase was encoun-
tered within). If it has not, then it replaces the root
failure continuation with the symbol cant−fail before
returning the environment to the user.

To see why this is necessary, consider the exam-
ple of Figure 7. In this example, a compound decon-
structor containing a pcase is unified against a datum.
The pcase unifier tries the first clause, but when the
unification fails, the failure continuation is invoked,
backtracking to the pcase, which tries the next clause
and succeeds. Observe that it is sometimes necessary
to keep the failure continuation in the environment
returned to the caller, where it might be used for an-
other unification, or exposed to the user as the next

construct of a Scheme pcase. For example, if instead
of using ( list ’∗computer∗ x ’osx) as our datum, we had
used ( list ’∗computer∗ x y), the unification of the first
clause would have succeeded, binding x to ’pc and y

to ’ freebsd. But if we later unified y with ’osx, we
would have to backtrack to the pcase and try again,
since a unifying assignment is possible with the other
clause. However, the root failure continuation should
never be returned to the user (hence the need to re-
place it with cant−fail). If it were returned, a failure
in a future call to unify would cause the previous call
to return #f.

4.3.2 Scoping

The unifier uses α-renaming to properly implement
the correct scoping behavior of compound decon-

structors and pcase statements. Before the body of a
compound deconstructor is unified, in the algorithm
of Section 3.3, the names of the formal parameters
are renamed to new uninterned symbols. This means
that name conflicts will not occur, either between the
name of one of the parameters and a variable used
elsewhere, or between parameters in multiple appli-
cations of the same deconstructor.

Similarly, pcase scoping requires that, when uni-
fying the consequent of a clause, variables occurring
outside the pcase can be shadowed by new variables
created inside the condition of the clause. For exam-
ple, in the expression

(pcase x
( ( cons x y ) x ) )

the x appearing in the only clause is distinct from
the x that serves as the key for the pcase. This is also
implemented using α-renaming. Before unification of
a pcase, the free variables of the condition are identi-
fied (taking into account that it may contain a pcase

itself), and α-renamed within both the condition and
consequent of that clause.

5 Future Work

There are a number of aspects of the Plaid pattern
matching language, algorithm, and implementation
we would look to examine further in future. While
the pattern syntax is a subset of Scheme, it diverges
from the simple and absolute uniformity of Scheme
syntax. In particular, we would like to thoroughly
understand and, if possible, reconcile the currently
incompatible semantics of the first position of a pat-
tern combination, which must be a name that cor-
responds to a deconstructor in the environment, and
the remaining positions, which must be patterns. We
would also like to explore how numbers can be bet-
ter handled within the pattern language. Currently,
the pattern system is limited to treating numbers as
opaque literals with no notion of the relationships
between different numbers. For example, currently
arithmetic operators and comparators do not exist in
the pattern language.

A number of improvements to the implementa-
tion are possible, particularly through more thorough
static analysis of patterns. This may allow us to elim-
inate names in compiled patterns altogether, perhaps
replacing them with vector offsets to eliminate the
need to construct and search through binding dictio-
naries. This may also eliminate the need to α-rename
compound deconstructor bodies.
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Finally, there are a number of plausible modifica-
tions of the unification algorithm itself. For example,
because of the limitations of the pattern language,
it may be possible to reliably detect non-terminating
conditions during pattern matching (such as a com-
pound deconstructor calling itself). Also, despite the
elegance of symmetric unification, it may simplify the
system to switch to asymmetric unification, in which
a pattern is matched against a datum instead of an-
other pattern. This places numerous restrictions on
the set of cases the unifier needs to consider, and may
eliminate the need for the conversions between data
and patterns that are currently necessary when inter-
facing with the unifier.

6 Conclusion

Traditional syntactic pattern matching is incompati-
ble with abstraction, greatly limiting its power. Plaid
shows that this incompatibility needs not be the case
by introducing a new pattern language that provides
support for abstract data types. The key insight that
makes abstraction possible is that by defining the pat-
tern language to be a restricted subset of Scheme, a
single definition suffices as both a constructor and a
deconstructor — it provides both an implementation
of a procedure and a mechanism for matching the
data produced by that procedure.

Our pattern language incorporates this notion of
abstraction based on reversible computation, and a
reversible control flow construct, pcase. The language
is sufficiently expressive to represent many common
and useful procedures, often with minimal modifica-
tions to their typical implementations. Combining
these abstractions with a pattern matching system
allows us to easily implement techniques for viewing
data in different ways, such as canonicalization and
imagination. As a result, systems such as seman-
tic pattern matchers, which traditionally lend them-
selves to complex pattern matching semantics, be-
come trivial because Plaid allows the programmer to
declaratively specify a desired view of the data rather
than an implementation of how to convert the data
to that view.

(define−constructor (my−computer model )
( l i s t ’ ∗computer∗

model
(pcase model

( ’ pc ’ f r e eb sd )
( ’mac ’ osx ) ) ) )

1. ( un i f y ( l i s t ’ ∗computer∗ x ’ osx )
(my−computer a )

2. ( un i f y ( l i s t ’ ∗computer∗ x ’ osx )
( l i s t ’ ∗computer∗

model
(pcase model

( ’ pc ’ f r e eb sd )
( ’mac ’ osx ) ) ) )

3. ( un i f y x model )

=⇒ x← model

4. ( un i f y ’ osx (pcase model
( ’ pc ’ f r e eb sd )
( ’mac ’ osx ) ) )

=⇒ fail ←#[pcase failure continuation]

5. ( un i f y ’ osx ’ f r e eb sd )

=⇒ failure! Invoke continuation and return to (4)

6. ( un i f y ’ osx (pcase model
( ’mac ’ osx ) ) )

=⇒ fail ←#[root failure continuation]

7. ( un i f y ’ osx ’ osx )

8. ( un i f y model ’mac)

=⇒ model← ’mac

Figure 7: Example of pcase unification. A compound
deconstructor containing a pcase is unified with a
datum consisting of cons fundamental deconstructors
(1). When the pcase is encountered, a new failure
continuation is set (4), and the first clause’s conse-
quent is unified with the datum (5). This fails, so
control flow backtracks to the pcase, which tries the
next clause; because the next clause is the final clause,
the root failure continuation is kept (6). The pcase

clause’s consequent is unified with the datum (7) and
its condition against the key variable (8), which suc-
ceeds.
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