PersiFS,: Structures for Efficient
File System-Scale Partial Persistence

Austin Clements Dan Ports

Thursday, May 12, 2005

Austin Clements, Dan Ports PersiFS;

Outline

@ Introduction
@ Overview
@ Background

© Original PersiFS
@ Overview
@ Structures

© PersiFS,
@ Overview
@ Structures
@ Persistent B+-tree

O Conclusion

Austin Clements, Dan Ports PersiFS;

Introduction q
Overview

Background

What is PersiFS?

@ A persistent file system

@ A persistent file system

Austin Clements, Dan Ports PersiFS;

Introduction q
Overview

Background

What is PersiFS?

@ A persistent file system (in the systems sense)
o We'll call this durable

@ A persistent file system

Austin Clements, Dan Ports PersiFS;

Introduction q
Overview

Background

What is PersiFS?

@ A persistent file system (in the systems sense)
o We'll call this durable

@ A persistent file system (in the data structures sense)

Austin Clements, Dan Ports PersiFS;

Introduction

Overview
Background

Persistence (in the data structures sense)

Definition

Partially persistent data structures allow queries on any previous
version, but only allow modifications to the current version. Each
modification produces a new version.

Fully persistent data structures allow modifications to previous
versions. The history of the structure forms a tree.

Austin Clements, Dan Ports PersiFS;

Introduction .
Overview

Background

Persistent File Systems

Definition
A persistent file system allows access to past versions of the file
system.

Austin Clements, Dan Ports PersiFS;

Introduction .
Overview

Background

Persistent File Systems

Definition
A persistent file system allows access to past versions of the file
system.

@ Version control systems like CVS, Subversion, etc.
@ Snapshot and backup systems like AFS's 01dFiles

Austin Clements, Dan Ports PersiFS;

Introduction .
Overview

Background

PersiFS

PersiFS goes a few steps further

Austin Clements, Dan Ports PersiFS;

Introduction .
Overview

Background

PersiFS

PersiFS goes a few steps further
@ Continuously versioned so every modification is saved

@ Real file system interface

Austin Clements, Dan Ports PersiFS;

Introduction .
Overview

Background

PersiFS

PersiFS goes a few steps further
@ Continuously versioned so every modification is saved
@ Real file system interface

How do we do this efficiently, both time and space-wise?

Austin Clements, Dan Ports PersiFS;

Introduction .
Overview

Background

A File System Data Structure

@ Needs to support:

o READ(file, timestamp, offset) — substring
o Mopbiry(file, offset, new-substring)

@ Very large data sets — must be space-efficient

@ Need fast access to both current and past revisions

Austin Clements, Dan Ports PersiFS;

Overview

Original PersiFS Structures

What was PersiFS;?

An implementation of PersiFS using silly, simple data structures
from the systems world.

Austin Clements, Dan Ports PersiFS;

Overview

Original PersiFS SO

File System Structures

@ Chunking

@ Divides data into content-sensitive chunks for efficient storage
of modifications

Austin Clements, Dan Ports PersiFS;

Overview

Original PersiFS s

File System Structures

@ Chunking

@ Divides data into content-sensitive chunks for efficient storage
of modifications

@ Superblob
@ Stores chunks in a big append-only vector

Austin Clements, Dan Ports PersiFS;

Overview

Original PersiFS s

File System Structures

@ Chunking

@ Divides data into content-sensitive chunks for efficient storage
of modifications

@ Superblob
@ Stores chunks in a big append-only vector
@ Metadata log

s Stores sequence of file metadata changes over time (including
pointers to file contents)

Austin Clements, Dan Ports PersiFS;

Overview

Original PersiFS s

Content-sensitive Chunking

@ Use a sliding Rabin fingerprint, f(A)
@ When f(A) = 42 (mod 2'3), draw a chunk boundary

Rabbit say to itself, ‘Oh dead

@ Modifications (even insertions) have only local effects on
chunk contents

Austin Clements, Dan Ports PersiFS;

Metadata Log

Original PersiFS

Overview
Structures

Time
11:56
11:57
12:00

File
908
539
908

Modification

Chunks are now 56, 57, 94, 59
Chunks are now 80, 95
Chunks are now 56, 57, 96, 59

@ O(n) replay (and thus read) time

@ Must periodically store large snapshots for reasonable replay

@ O(1) write time and space

Austin Clements, Dan Ports PersiFS;

Overview
Structures
PersiFS, Persistent B+-tree

What is PersiFS,?

@ The superblob can be improved

@ The metadata log can be replaced

Austin Clements, Dan Ports PersiFS;

Overview
Structures
PersiFS, Persistent B+-tree

@ External memory model
@ Need partial persistence
@ Start with a B™-tree

] L e]

Austin Clements, Dan Ports PersiFS;

Overview
Structures
PersiFS, Persistent B+-tree

Chunk Fusion

@ Utilizes regular B™-tree to store fingerprint-to-address
mapping

@ Chunks with identical content can be fused and only stored
once in the super blob

@ O(logg.,1 n) memory transfers for write
@ O(1) for read (unaffected by fusion)

@ Potentially massive space savings at very little potential space
cost

Austin Clements, Dan Ports PersiFS;

Overview
Structures
PersiFS, Persistent B+-tree

A Persistent BT -tree

o INSERT(key, value)

@ SEARCH(key, timestamp) — (key, value)
@ Exact key match or predecessor query

o DELETE(key)

e CoMMIT() — timestamp

o Allows multiple modifications grouped under a single
timestamp

@ Grouping conceals unnecessary states (for efficiency), and
inconsistent states (for correctness)

Austin Clements, Dan Ports PersiFS;

Overview
Structures
PersiFS, Persistent B+-tree

Persistifying a B*-tree

ACDE]

[Rsrov[[] [ve[]]

@ Similar to "modification box” approach by Sleator and Tarjan

@ Nodes may store a second, modified copy with some version

@ If mod box is full, create a new node and fix parent’s link

Austin Clements, Dan Ports PersiFS;

Overview
Structures
PersiFS, Persistent B+-tree

Persistifying a B*-tree

ox] [|

AcDE[1[ABCDE| [RSTUV] | | vz

@ Similar to "modification box” approach by Sleator and Tarjan
@ Nodes may store a second, modified copy with some version

@ If mod box is full, create a new node and fix parent’s link

Austin Clements, Dan Ports PersiFS;

Overview
Structures
PersiFS, Persistent B+-tree

Persistifying a B*-tree

lax|2]laT

[AcDE[1[ABCDE]]RSTUV|2|QRSNY2|

oV]

@ Similar to "modification box” approach by Sleator and Tarjan

@ Nodes may store a second, modified copy with some version

@ If mod box is full, create a new node and fix parent’s link

Austin Clements, Dan Ports PersiFS;

Overview
Structures
PersiFS, Persistent B+-tree

Persistifying a B*-tree

lax|2]laT

[AcDE[1[ABCDE]]RSTUV|2|QRSNY2|
oV]

@ O(logg, 1 n) memory transfers for read and write

@ O(1) additional space per modification

Austin Clements, Dan Ports PersiFS;

Overview
Structures
PersiFS, Persistent B+-tree

Replacing the Metadata Log

o]

timestamp file number

BT -tree

version number

’ Persistent BT -tree

#metadata

Austin Clements, Dan Ports PersiFS;

Conclusion

Results

@ Chunk fusion is a clear win
@ Potentially large space savings with minimal cost
@ Metadata log vs. arborescent metadata map: less clear

o Depends on filesystem usage patterns
o e.g. metadata log snapshot frequency vs. usage

Austin Clements, Dan Ports PersiFS;

Conclusion

Questions?

Austin Clements, Dan Ports PersiFS;

	Outline
	Introduction
	Overview
	Background

	Original PersiFS
	Overview
	Structures

	PersiFS2
	Overview
	Structures
	Persistent B+-tree

	Conclusion

