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Persistence (in the data structures sense)

Definition

Partially persistent data structures allow queries on any previous
version, but only allow modifications to the current version. Each
modification produces a new version.

Fully persistent data structures allow modifications to previous
versions. The history of the structure forms a tree.
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Persistent File Systems

Definition
A persistent file system allows access to past versions of the file
system.

@ Version control systems like CVS, Subversion, etc.
@ Snapshot and backup systems like AFS's 01dFiles
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PersiFS goes a few steps further
@ Continuously versioned so every modification is saved
@ Real file system interface

How do we do this efficiently, both time and space-wise?
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A File System Data Structure

@ Needs to support:

o READ(file, timestamp, offset) — substring
o Mopbiry(file, offset, new-substring)

@ Very large data sets — must be space-efficient

@ Need fast access to both current and past revisions
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What was PersiFS;?

An implementation of PersiFS using silly, simple data structures
from the systems world.
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File System Structures

@ Chunking

@ Divides data into content-sensitive chunks for efficient storage
of modifications
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File System Structures

@ Chunking

@ Divides data into content-sensitive chunks for efficient storage
of modifications

@ Superblob
@ Stores chunks in a big append-only vector
@ Metadata log

s Stores sequence of file metadata changes over time (including
pointers to file contents)
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Content-sensitive Chunking

@ Use a sliding Rabin fingerprint, f(A)
@ When f(A) = 42 (mod 2'3), draw a chunk boundary

Rabbit say to itself, ‘Oh dead

@ Modifications (even insertions) have only local effects on
chunk contents
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Metadata Log

Original PersiFS

Overview
Structures

Time
11:56
11:57
12:00

File
908
539
908

Modification

Chunks are now 56, 57, 94, 59
Chunks are now 80, 95
Chunks are now 56, 57, 96, 59

@ O(n) replay (and thus read) time

@ Must periodically store large snapshots for reasonable replay

@ O(1) write time and space
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What is PersiFS,?

@ The superblob can be improved

@ The metadata log can be replaced
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@ External memory model
@ Need partial persistence
@ Start with a B™-tree

] L e ]

Austin Clements, Dan Ports PersiFS;



Overview
Structures
PersiFS, Persistent B+-tree

Chunk Fusion

@ Utilizes regular B™-tree to store fingerprint-to-address
mapping

@ Chunks with identical content can be fused and only stored
once in the super blob

@ O(logg.,1 n) memory transfers for write
@ O(1) for read (unaffected by fusion)

@ Potentially massive space savings at very little potential space
cost
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A Persistent BT -tree

o INSERT(key, value)

@ SEARCH(key, timestamp) — (key, value)
@ Exact key match or predecessor query

o DELETE(key)

e CoMMIT() — timestamp

o Allows multiple modifications grouped under a single
timestamp

@ Grouping conceals unnecessary states (for efficiency), and
inconsistent states (for correctness)
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Persistifying a B*-tree

ACDE]

[Rsrov[ [ ] [ve[] ]

@ Similar to "modification box” approach by Sleator and Tarjan

@ Nodes may store a second, modified copy with some version

@ If mod box is full, create a new node and fix parent’s link
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Persistifying a B*-tree

ox] [ |

AcDE[1[ABCDE| [RSTUV] | | vz

@ Similar to "modification box” approach by Sleator and Tarjan
@ Nodes may store a second, modified copy with some version

@ If mod box is full, create a new node and fix parent’s link
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Persistifying a B*-tree

lax|2]laT

[AcDE[1[ABCDE] ]RSTUV|2|QRSNY2|

oV ]

@ Similar to "modification box” approach by Sleator and Tarjan

@ Nodes may store a second, modified copy with some version

@ If mod box is full, create a new node and fix parent’s link
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Persistifying a B*-tree

lax|2]laT

[AcDE[1[ABCDE] ]RSTUV|2|QRSNY2|
oV ]

@ O(logg, 1 n) memory transfers for read and write

@ O(1) additional space per modification
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Replacing the Metadata Log

o]

timestamp file number

BT -tree

version number

’ Persistent BT -tree

#metadata

Austin Clements, Dan Ports PersiFS;



Conclusion

Results

@ Chunk fusion is a clear win
@ Potentially large space savings with minimal cost
@ Metadata log vs. arborescent metadata map: less clear

o Depends on filesystem usage patterns
o e.g. metadata log snapshot frequency vs. usage
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Questions?
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