
PersiFS: A Continuously Versioned Network File System

Austin T. Clements, Dan R. K. Ports, Ben A. Schmeckpeper, Hector Yuen

{aclements, drkp, bschmeck, hyz}@mit.edu

May 12, 2005

Abstract

Most file systems are ephemeral, meaning that once

a change has been made, there is no way to recall

the previous contents of the file system. Backups,

version control systems, and user interface improve-

ments such as “trash cans” attempt to alleviate this

problem; however, these are all rough approximations

of persistent file system structures, giving users re-

stricted access to a restricted set of past states of the

file system. PersiFS is a fully persistent file system,

providing access to any past state of the entire file

system. PersiFS achieves full persistence without sac-

rificing access time to either current versions or past

versions, using inordinate amounts of disk space, or

requiring modification to existing applications.

1 Introduction

A version-controlled file system lets the user ac-
cess not just the current state of the file system
but previous states as well. For example, back-
ups are one typical, restricted form of a version-
controlled file system, allowing high-latency ac-
cess to a highly restricted set of past copies of a
file system.

PersiFS is a continuously versioned network
file system. A continuously version-controlled
file system allows access to the complete state of
the file system at any point in the past. Incorpo-
rating continuous versioning into the file system
means that a file can never be lost and mistaken
modifications can always be undone. In Per-

siFS, any change to a file forces the file system
to archive a copy of that file, indexed by a time

stamp. PersiFS ’s time stamp interface provides
users with a natural way to express accesses to
past versions of files.

1.1 Motivation

Users frequently wish to undo changes they have
made, whether intentionally or inadvertently, to
the file system — for example, inadvertent dele-
tions, restoring files corrupted by application
bugs, or simply reverting to an earlier revision of
a document. Regular file systems do not support
this operation natively, which results in a num-
ber of tools that address parts of this problem
in different ways. Some operating systems pro-
vide a “trash can” interface to help users avoid
mistaken deletions of files. However, this is only
a partial solution because it only addresses the
problem of deletions, and even then only until
the trash can is emptied and the files are perma-
nently removed. The proliferation of “undelete”
tools for administrators suggests that this solu-
tion is inadequate. PersiFS makes these tools
unnecessary, since files are never truly deleted
from the file system. Fears of accidental over-
write, rename or deletion are unnecessary.

Versioning is a natural and desirable aspect
of file systems. Often, critical files are versioned
through the use of version control systems. How-
ever, these must be explicitly configured, main-
tained, and interacted with. Providing such sup-
port at the file system level gives the ability to
easily and automatically track changes to any

file over time. To eliminate the need for user
interaction and the possibility of user error, sys-

1



tems exist which automatically create periodic
snapshots (either of just critical system files, or
of entire file systems). These, however, may fail
to capture multiple changes made between snap-
shots and can create inconsistent snapshots at
inopportune times. By capturing every revision,
PersiFS does not suffer from these problems.

Because PersiFS is a network-accessible file
system, it is ideal for multi-user systems. Such
systems typically use some form of snapshotting
to provide all users of the system with secu-
rity for their files and to avoid administrative
nightmares with recovering from user errors. By
using a continuously versioned file system like
PersiFS, system administrators can can provide
users with an easy way to recover from a much
wider range of problems.

1.2 Challenges

The primary challenges to such a system lie in
not only providing access to past versions, but
doing so reasonably fast; efficiently utilizing disk
space; providing access and modification to the
current version at speeds comparable to non-
versioned file systems; and achieving all of this
without requiring modifications to existing ap-
plications.

PersiFS provides durable storage by storing
all data on disk on a central server. For relia-
bility and ease of implementation, the PersiFS

data structures are stored on a normal file sys-
tem, though with minor modifications it could
operate on a physical disk as well. Because the
server must be able to retrieve any past version
of any file from durably storage, PersiFS intro-
duces many optimizations in order to achieve an
efficient durable representation. As further dis-
cussed in Section 3.2, it uses a compact metadata
log to track changes over time and an underly-
ing content store that efficiently fuses common
data between files and versions. These structures
are designed to optimize access to the current
version so it is nearly indistinguishable from ac-
cesses a regular file system. Access time to past
versions is less critical than to the current ver-

sion; accordingly, the PersiFS structures provide
reasonably fast recall of past versions, but do not
optimize for it.

PersiFS exposes a novel file system interface
that allows users and applications to access the
file system and its past states without any modi-
fications to applications or the need for any spe-
cial libraries. For improved interoperability, Per-

siFS exposes this file system interface over an
unmodified NFS protocol by providing a special
root directory containing automatically gener-
ated subdirectories for every point in time. Sec-
tion 3.1 discusses this interface further. While
the NFS interface allows unmodified applications
and operating systems to interface with PersiFS,
it introduces further complications to its design
in order to accommodate the quirks of NFS. Pri-
marily, the statelessness of certain aspects of the
NFS protocol directly conflicts with the persis-
tence goals of PersiFS, as further discussed in
Section 4.2.

2 Related Work

Many other systems provide some form of per-
sistent versioned storage. PersiFS differs from
these systems in that it provides access to all
previous versions of the file system’s state via a
standard file system interface.

2.1 Version Control Systems

Version control systems such as CVS [1] are the
standard mechanism for tracking revision histo-
ries in large projects. While PersiFS provides
similar revision history operations, it does not
provide the higher-level semantics for synchro-
nizing the work of multiple users, such as file
locking as in RCS [10] or merging as in CVS.
PersiFS provides only revision history support;
it does not provide the higher-level functionality
because the appropriate semantics are dependent
on the type of file and its mode of use (e.g. text
vs. binary files), and so should not be applied at
the file system level.

2



CVS organizes revision histories by assigning
a version number to each revision of a particular
file. This is a natural interface for the history
of a particular file, but does not generalize well
to tracking the history of the entire file system.
Many of the weaknesses of CVS as a version con-
trol system are due to this interface: it does not
capture the notion of changes that occur simul-
taneously to multiple files (changesets), and it
does not effectively handle changes to the direc-
tory structure, such as moving or renaming a file.
The latter is a major problem for a file system,
since the directory structure can be highly dy-
namic.

Subversion [2] addresses many of the short-
comings of CVS by using a single global revision
number that identifies a particular state of the
entire repository. This is similar to PersiFS ’s in-
ternal representation; however, the user interface
uses date/timestamps instead because global re-
vision numbers do not generally correspond to a
useful identifier from the user’s perspective.

2.2 Snapshots vs. Continuous Ver-

sioning

Previous states of the file system are commonly
stored by a backup system that periodically
archives the state of the filesystem. Snapshot-
based version-controlled file systems are the nat-
ural extension of this idea: they periodically
take a snapshot of the state of the filesystem,
and make it readily available. The Plan 9 file
server [6], for example, creates daily snapshots
of the filesystem and stores them on a write-
once mass-storage system such as a WORM juke-
box or the Venti archival server [7]. WAFL [3]
provides similar snapshotting functionality us-
ing copy-on-write disk blocks. AFS provides ac-
cess to the most recent snapshot through the
OldFiles mechanism.

While a great improvement over a standard
ephemeral file system, snapshotting filesystems
have the obvious disadvantage that they cannot
track changes that occur between revisions. Per-

siFS is a continuously version-controlled file sys-

tem: each change to the file system is stored as
a new revision. Elephant [8] and CVFS [9] also
use this technique. However, PersiFS provides
a much more convenient interface for users.

2.3 Interfaces

Some versioned file systems require special tools
to access previous versions of the file system. For
example, CVFS is designed for performing post-
intrusion forensic analysis, so it does not pro-
vide an interface for users to easily recover old
versions of their files. A convenient way to pro-
vide access to old versions is via a filesystem in-
terface. Plan 9 creates a directory hierarchy of
snapshots; Pike et al. [6] report that providing
access to snapshots via this interface is very con-
venient for users.

Ideally, it should be possible to interact with
the versioned file system exclusively through the
file system interface, such that unmodified stan-
dard UNIX utilities (ls, cp, etc.) suffice for re-
vision control. This is not possible in Elephant,
which adds new system calls. VersionFS [4] al-
lows unmodified utilities to be used, but only
via a library wrapper and the LD PRELOAD mech-
anism. PersiFS uses a purely file-system-based
interface, using an automounter to allow stan-
dard utilities to be used without any modifica-
tion.

3 Design

3.1 User Interface

PersiFS provides access to both current and
previous versions of the file system state via a
standard file system interface. Volumes are ac-
cessed across the network using an automounter
interface: PersiFS is mounted over NFS, say as
/persifs, and the current version of the file sys-
tem is exposed as /persifs/now.

The automounter provides access to
previous versions of the file system
using timestamps as names, such as
/persifs/2005-04-13-12-00-00. This gives

3



a read-only snapshot of the file system as it
appeared at noon on April 13th, 2005.

The user interface also includes a number of
small tools that improve the usability of PersiFS.
For example,

• persifs now

Prints the archive path to the current direc-
tory as of the current time.

• persifs info

Prints statistics about the server.

• persifs log file

Displays a log of the modification times for
file.

3.2 File System Structure

A trivial representation for a file system that
achieves persistence is a log of every operation
ever performed on the file system. In order to
answer a query for a past point in time, the
server can replay the log to this point in time
and answer the query from that snapshot of the
file system.

However, this fails to achieve the goals of Per-

siFS : reading from any version requires vast
amounts of time in order to replay the log
(though writing is very fast!), and space uti-
lization will be poor because many applications
rewrite the full contents of a file to disk even
when only a small portion has been changed.

3.2.1 Read Optimization

To optimize this, we separate file contents from
metadata. File contents are stored in a sepa-
rate block store called the superblob, while meta-
data changes (including pointers to the file con-
tents in the superblob) are stored in an inode

log. Because the inode log stores only meta-
data changes, it is very compact. Furthermore,
the metadata is small enough compared to the
file contents that it becomes reasonable to store
snapshots of the entire state of the file system
metadata in the inode log at periodic intervals,

allowing a fast replay to be performed by starting
from the last snapshot before the desired time.

Like traditional Unix file systems, PersiFS

uses inodes identified with unique inumbers to
store file and directory metadata. Unlike most
file systems, however, inumbers are never re-
cycled because inodes are never completely re-
moved. A NFS file handle is thus simply an
inumber, plus a timestamp if it does not refer-
ence the current version; no generation numbers
are required. Also unlike most file systems, a
PersiFS inumber is simply a unique identifier
for a file, and has no correlation to physical disk
addresses.

In order to further compact the inode log, the
actual contents of the inodes are also stored in
the superblob, and inode log entries contain only
pointers into the superblob. This allows more in-
ode log entries to be stored in each disk block,
thereby dramatically increasing the rate at which
a specific entry can be located during a replay.
Furthermore, it is quite practical to keep the
mapping of inumbers to superblob addresses for
the current version of the file system in mem-
ory, allowing operations on the metadata of the
current file system to be performed without re-
playing the log.

Together, the capabilities of the inode log al-
low PersiFS to nearly achieve its speed goals.
Reads from the current version of the file sys-
tem need only read the file contents from the su-
perblob and writes to the current version of the
file system need only append to the inode log
and insert the file contents into the superblob.
Answering reads for past versions of the file sys-
tem only requires replaying a small amount of
log from a past snapshot.

3.2.2 Write Optimization

The superblob can be optimized in order to im-
prove the write performance of PersiFS and
achieve its space efficiency goals. First, instead
of storing entire files as blocks in the superblob,
files are divided into chunks which are stored in
the superblob. Thus, a modification to some

4



part of a file need only rewrite the affected
chunks. Because files in these scheme cannot be
addressed by a single location in the superblob,
inodes must store the sequence of chunk loca-
tions for a file.

In a further refinement, chunk boundaries
are not placed at regular intervals, but instead
use content-sensitive chunking. This technique
places chunk boundaries based on file contents
such that local modifications to file contents,
including insertions and deletions, only affect
chunks in that region of the file. We use the same
Rabin fingerprint-based algorithm as LBFS [5]
for content-sensitive chunking.

Chunking allows PersiFS to achieve its speed
goals because it has only minor effects on read
performance, while greatly improving write per-
formance by avoiding the need to manipulate file
contents that have not been modified. Chunk-
ing also improves PersiFS ’s space efficiency by
avoiding rewriting some redundant data.

3.2.3 Space Optimization

To further optimize space efficiency, the su-
perblob leverages chunk fusion. Every chunk has
a fingerprint, which is simply the 160-bit SHA1
of its contents. The blob index maps chunk fin-
gerprints to the locations of those chunks in the
superblob. Whenever a chunk is added to the su-
perblob, the blob index is first checked for that
chunk’s fingerprint. If the fingerprint is found,
the chunk being inserted can be fused with the
existing chunk in the superblob, requiring no ad-
ditional space. Otherwise, it is appended to the
superblob and indexed. This is similar to the ap-
proach employed by Venti [7] for archival block
storage. While the blob index could be recom-
puted by reading the entire superblob, this would
lead to prohibitively long recovery, so the blob
index is maintained as an on-disk B+-tree.

Combined with content-sensitive chunking,
chunk fusion allows PersiFS to efficiently store
local modifications to files, sharing most file con-
tents between versions of that file. Furthermore,
it also ensures that identical content in multi-

ple files (for instance, due to file copying or au-
tomatic backup copies) will consume very little
space beyond the single copy.

4 Implementation

The main aspects of the implementation of Per-

siFS are described in this section. A logical sub-
division of the modules involved in PersiFS is
described in Figure 1. In particular, the low-
est levels of the implementation are modules cor-
responding to the information structures repre-
sented on disk, the inode log, superblob, and blob

index. Layered atop this are file and directory

modules, which provide an abstraction based on
the standard file system concepts. Finally, inter-
action with users is handled by a NFS interface,
including the automounter.

NFS

Blob Index

Directory File

Inode Log Chunkable

Superblob

Network

Figure 1: Implementation model

4.1 Representation Management

Each of the three information structures is stored
on disk, and has a corresponding module that
provides an interface to the higher levels of the
PersiFS implementation. For ease of implemen-
tation, our initial implementation stores each
structure as a separate file on a standard file sys-
tem, though it would be reasonably straightfor-

5



ward to adapt it for direct storage on a physical
disk.

The Superblob module implements content-
addressable storage, providing a standard
get/put-block interface that uses the hash fin-
gerprint of the block to identify it. It makes use
of the Blob Index module, which uses an on-disk
B+-tree to map block fingerprints to indexes into
the superblob structure on disk.

The Inode Log module stores inumber map-
pings in a time-indexed log. Each mapping con-
tains the inode number and the address of the
inode in the superblob. The inode log inter-
face allows creation, modification, and deletion
of inodes to be recorded in the log, and supports
scanning the log to obtain the inode map at any
point in the past as well as its current state. This
module also periodically records snapshots of the
entire inode map in the log for rapid replay from
any past point.

4.2 File System Abstraction

To simplify the implementation, a file system ab-
straction consisting of file and directory repre-
sentations is built atop the persistent data struc-
tures. Using these abstractions also makes it fea-
sible to experiment with different on-disk repre-
sentations of the file system data structures.

The File module bundles together a file’s in-
ode metadata and its content, stored as chunks
chunks. The File module API defines meaning-
ful file operations, such as create, read, write,
getAttr, and setAttr.

The contents of a file are represented by a mu-
table chunkable string backed by the superblob
and aware of the LBFS-style content-sensitive
chunking. The Chunkable module provides a
substring-read and substring-write interface. As
file contents are large, the contents of the string
are not read from the superblob unless neces-
sary. Multiple batched changes to the chunkable
string can be made without being committed
to disk; when a flush operation is performed,
the chunk boundaries are recalculated and new
chunks are added to the superblob as necessary.

The chunkable string can be converted to a mar-
shalled representation suitable for storing in in-
odes that lists all of the chunks contained in a
file and their offsets in the superblob.

The Directory module provides the standard
directory operations of accessing or modifying
the list of files in the directory. Each directory
is stored as a file whose content happens to be
directory entries, distinguished from other files
through special flags.

Ideally, multiple related changes to the file
would be aggregated and committed as a whole
only when the file is closed, in order to avoid in-
consistent states. Often one write from the user
is in fact broken into a series of writes, and forc-
ing the filesystem to create distinct versions for
each ’sub-write’ would be less than desirable. It
is both inefficient, since it creates many unnec-
essary versions that will not need to be accessed,
and logically incorrect, since a read could con-
ceivably access an inconsistent state created by a
partially-performed change. Unfortunately, NFS
v3 does not provide file closure notification to the
server, so the desired commit-on-close semantics
are impossible to achieve. Instead, the File mod-
ule attempts to approximate these semantics by
grouping together successive writes (in a span of
five seconds) to a single file.

4.3 Network Interface

Clients access files on the PersiFS server using
standard NFS. The PersiFS NFS layer exposes
a magic root directory that contains a now di-
rectory reflecting the current file system state,
as well as directories created on-the-fly that ex-
pose any past version of the file system. The
NFS layer translates requests for current or past
versions of the file system into operations on the
underlying file and directory structures, which in
turn operate on the underlying disk representa-
tion.

6



5 Evaluation

Upon implementing PersiFS, we found that it
achieves performance on operations in the cur-
rent version of the file system comparable to
that of other NFS-based file systems. Snapshots
were sufficiently compact (80K for 10,000 files)
that the occasional blocking write operation was
barely noticeable.

Navigating past versions of the file system was
slower than expected, though still usable. Read-
ing a past version of the file system containing
10,000 files required reading approximately 80K
from the inode log (the cost was dominated by
reading the previous snapshot), in addition to
the time required to read the file data from the
superblob (which was no more expensive than
reading file data for the current version).

While examining why read performance did
not reach expectations, we found that standard
UNIX tools typically made more queries than
expected or repeated queries. ls, for example,
performed multiple NFS calls for each file in the
listed directory in order to obtain metadata. We
suspect that better caching of historic data (in
particular, metadata) would greatly improve the
performance of PersiFS.

Chunk fusion proved quite advantageous for
some operations, while introducing no noticeable
overhead in general. We experimented with edit-
ing a 160K text file. After four revisions, the
file system had grown by merely 30K. Reduc-
ing the average chunk size (currently 8K) would
have improved this further, though would have
increased the time required for both read and
write operations. Chunk fusion also abated the
effects of programs which implement their own
backup. For example, backup copies created by
Emacs required less than a kilobyte of additional
file system space, regardless of the size of the
original file.

6 Future Work

In the future, we would like to provide im-
proved administrative control over the file sys-
tem. Primarily, we would like the implement
user-controlled retention policy, allowing old re-
visions to be deleted or merged with other re-
visions, selectively reducing the granularity of
time in order to conserve space. This capability
would eliminate the primary space drawback to
using a continuously versioned file system such as
PersiFS. How to effectively implement retention
policies with the existing file system structures
is unclear, so new structures may be necessary.

We would also like to improve the user in-
terface of PersiFS, perhaps adding support for
some of the version management features typical
in version control systems. One such example
is tagging, in which a user is able to associate a
symbol with a particular version of a file for easy
reference later. It would also be advantageous to
support a wider range of date specifications, in-
cluding relative ones, somewhat like CVS’s date-
specs.

We are currently developing PersiFS 2, an re-
implementation of PersiFS that applies theoret-
ical results from the field of data structures to
the underlying file system structures, primar-
ily building on work with persistent, external
memory structures. From this, we hope to gain
insight into the applicability of these advanced
data structures in solving real problems and to
examine the trade-offs between the increased im-
plementation complexity of these structures and
the realization of their theoretical promise.

7 Conclusions

PersiFS successfully overcomes the challenges
described at the outset of this paper by achieving
both time and space efficiency and transparently
providing persistent file system services that can
be utilized without the need to modify applica-
tions. Time and space efficiency are achieved
with the separation of the log from the bulk

7



data, content-sensitive chunking, and chunk fu-
sion. PersiFS behaves like a regular NFS server,
providing access to different versions of the file
system through a naming convention that oth-
erwise retains regular UNIX semantics and thus
does not require any changes to existing applica-
tions to work.

PersiFS has the potential to give users ease
of mind and ease of use by eliminating the need
to worry about the integrity of their files. For
administrators of multi-user systems, most user
error can be trivially dealt with by just backing
up until before the mistake.

Continuously versioned file systems like Per-

siFS have the potential to change the way users
view and interact with their files. By adding a
time axis to the file system and giving it a very
tangible archeology, users gain an extra dimen-
sion of expressive power over their manipulations
of the file system.

References

[1] P. Cederqvist, editor. Version Manage-

ment with CVS. Free Software Foundation,
2005. Available at https://www.cvshome.

org/docs/manual/.

[2] B. Collins-Sussman, B. W. Fitzpatrick, and
C. M. Pilato. Version Control with Subver-

sion. O’Reilly Media, 2004. Available at
http://svnbook.red-bean.com.

[3] D. Hitz, J. Lau, and M. Malcolm. File sys-
tem design for an NFS file server appliance.
In Proceedings of the USENIX Winter 1994

Technical Conference, pages 235–246, San
Fransisco, CA, USA, 17–21 1994.

[4] K.-K. Muniswamy-Reddy. VERSIONFS:
A versitile and user-oriented versioning file
system. Master’s thesis, December 2003.

[5] A. Muthitacharoen, B. Chen, and
D. Mazieres. A low-bandwidth network
file system. In Symposium on Operating

Systems Principles, pages 174–187, 2001.

[6] R. Pike, D. Presotto, S. Dorward, B. Flan-
drena, K. Thompson, H. Trickey, and
P. Winterbottom. Plan 9 from Bell Labs.
Computing Systems, 8(3):221–254, Summer
1995.

[7] S. Quinlan and S. Dorward. Venti: a
new approach to archival storage. In First

USENIX conference on File and Storage

Technologies, Monterey, CA, 2002.

[8] D. S. Santry, M. J. Feeley, N. C. Hutchin-
son, A. C. Veitch, R. W. Carton, and J. Ofir.
Deciding when to forget in the elephant file
system. In Symposium on Operating Sys-

tems Principles, pages 110–123, 1999.

[9] C. Soules, G. Goodson, J. Strunk, and
G. Ganger. Metadata efficiency in version-
ing file systems, 2003.

[10] W. F. Tichy. RCS — a system for version
control. Software — Practice and Experi-

ence, 15(7):637–654, 1985.

8


