
Towards Application Security on Untrusted Operating Systems
Dan R. K. Ports

MIT CSAIL & VMware, Inc.∗

drkp@csail.mit.edu

Tal Garfinkel
VMware, Inc.

talg@vmware.com

Submitted to HotSec ’08

Abstract
The complexity of commodity operating systems brings with

it the presence of vulnerabilities. Consequently, a great deal of
work has studied how to mitigate the impact of a compromise
by protecting OS components or applications through mecha-
nisms such as microkernels, virtual machine monitors, and new
processor architectures. Unfortunately, most work has focused
on CPU and memory isolation and neglected OS semantics.
Thus, while we know much about how to prevent OS and appli-
cation processes from directly modifying each other, far less is
understood about how different OS components can undermine
application security if they turn malicious.

We consider this problem in in the context of our own work
on Overshadow, a virtual-machine-based system for retrofitting
protection in commodity operating systems. We explore how
malicious behavior of each major OS subsystem can potentially
undermine application security, and propose measures for mit-
igating such behavior. While our discussion is presented in
terms of Overshadow and Linux, many of the problems and
solutions are applicable to other system attempting to cope with
the problem of a malicious OS.

1 Introduction
Commodity operating systems are tasked with storing
and processing our most sensitive information, from man-
aging financial and medical records to carrying out online
purchases. Unfortunately, the assurance of these systems
often falls short. This poor assurance appears to be the re-
sult of the complexity inherent in these systems — while
the generality of a commodity operating system makes it
useful for many tasks, it also makes it difficult to secure.

Many solutions have been proposed for enhancing
the assurance of these systems. Some use microker-
nels to enhance assurance by running parts of the OS,
such as the file system and network stack, in separate
processes [10]. Others, such as NGSCB (formerly Palla-
dium) [3], Proxos [11], XOM [7], and Overshadow [2],
attempt to retrofit an orthogonal, higher assurance execu-
tion environment alongside a commodity OS, allowing
applications to run in a protected environment, but still
use the services of the OS. The implications of allow-
ing protected applications to continue to rely on existing,

∗Work done during an internship at VMware, Inc.

untrusted OS services are poorly understood. Relatively
little is known about the problems that arise for applica-
tion security when part of the OS behave maliciously.

We explore this problem in the context of Overshadow,
a virtualization-based system we have developed that pro-
tects applications inside a VM from the guest operating
system running in that VM, attempting to maintain the
secrecy and integrity of an applications data in the face of
OS compromise. Our discussion considers the implica-
tions of a malicious Linux OS. For each OS component,
we examine how malicious behavior could undermine
application secrecy and integrity, and suggest potential
mitigations. While we present our analysis and solutions
in the context of Linux and Overshadow, they are more
generally applicable to any system attempting to secure
execution applications in the face of a compromised OS.

We begin with a review of systems that enforce isola-
tion between protected applications and untrusted OSes
in Section 2. Next, we explain how a malicious OS can
subvert them, using false system call return values to trick
an application into revealing its secrets, and argue for a
solution based on a verifiable system call interface (Sec-
tion 3). Finally, we examine the implications of making
specific OS components untrusted, and propose defenses
against possible attacks, in Section 4.

2 Extended Protection Architectures
Traditional commodity operating systems are monolithic
programs that directly manage all hardware resources,
making the idea of security in the event of a compro-
mise hopeless. However, a variety of new architectures
have recently been proposed that can potentially mitigate
the impact of an OS compromise by providing mem-
ory and CPU isolation using a separate layer below the
commodity OS, either by way of a VMM, microkernel
or architecture extensions — taking sole responsibility
for protection out of the hands of the OS. These prevent
attacks in which the OS directly reads or modifies ap-
plication CPU or memory state. We focus not on the
attacks these architectures prevent, but rather on what
comes next, i.e. once we have prevented direct attacks on
application state, how we can prevent higher-level attacks
based on modifying the semantics of system calls. Nev-

Submitted to HotSec ’08 1



ertheless, our work builds on the presence of an isolation
architecture, so we begin by surveying these approaches.

Microkernel-based architectures, such as those based
on L4 [5], divide both the application and OS into mul-
tiple components, placing each in its own process. In
Proxos, a virtual-machine-based system, all trusted com-
ponents (the protected applications and a trusted “private
OS”) are placed in a single VM, which runs alongside
another VM running a commodity OS. A proxy forwards
the application’s system calls to either the private OS
or commodity OS, depending on an application-specific
security policy. NGSCB [3] takes a similar, but less
backwards-compatible approach, by requiring the appli-
cation to be refactored into a trusted part which runs in
its own secure compartment and an untrusted part which
runs on the commodity OS.

XOM is a processor architecture that isolates protected
applications from each other and the operating system
using a combination of register-level tagging and crypto-
graphic techniques [7].

While seemingly different, all these architectures pro-
vide the same fundamental property: different protection
domains are isolated from each other — and some or all
of the application is run in a separate protection domain
from the OS. Isolation protects the secrecy and integrity
of resources like registers and memory, in addition to pro-
viding control flow integrity, i.e. control flow cannot be
altered except via well-defined protocols such as signal
delivery and system calls.

Overshadow. We present our discussion in the con-
text of our own work on Overshadow, a virtual-machine-
based system that uses the memory indirection provided
by virtualization to protect entities inside a VM [2]. Its
core primitive is multi-shadowing, which provides multi-
ple views of memory: when an application accesses its
own memory, it sees its data as normal, but if the OS
or another application accesses it, the VMM transpar-
ently encrypts the memory page. This guarantees secrecy
while still allowing the OS to manage resources. Over-
shadow also guarantees memory integrity by storing a
secure hash of each encrypted memory page in a table
indexed by virtual memory access. Because all resource
management is delegated to the untrusted operating sys-
tem, it is possible to use a greatly simplified VMM to
reduce the size of the TCB; for example, the VMM runs
only a single VM, so it does not need a CPU scheduler.

To adapt applications to this new execution environ-
ment, we add a user-level shim to each application at load
time. This allows Overshadow to support completely un-
modified applications and operating systems. The shim
cooperates with the VMM to provide secure control trans-
fer by storing execution state in protected memory. The
shim also interposes on application system calls, adapt-

ing their semantics as necessary for compatibility; for
example, data being passed to the OS is automatically
copied to unprotected memory so that the OS can access
it. In the extensions to Overshadow we propose in Sec-
tion 4, we make use of this system call interposition to
help securely implement system calls.

3 Implications of a Malicious OS
The protection architectures in the previous section guar-
antee that applications that do not have explicit interac-
tions with the OS execute correctly, because the integrity
of code and data is protected, and control flow proceeds
as normal. Assuming the basic protection architecture
is sound, no loss of integrity or data leakage is possible,
although availability is not guaranteed because the OS
could simply stop scheduling the application.

However, any non-trivial program makes system calls,
and this presents an opportunity for a malicious OS to
influence the program’s data and control flow by manipu-
lating system call results. To take a simple example, if a
multithreaded program relies on the OS to implement a
mutual-exclusion lock, the OS could grant the lock to two
threads at once. Since the OS also handles scheduling,
this has the potential to create a race condition even in
correctly written code, with arbitrarily bad consequences.

We note that characterizing the security properties that
can be provided when the operating system is malicious
is challenging. Ultimately, we would like to provide a
high-level guarantee like “sensitive data is never exposed
to unauthorized parties.” However, we would like to
operate with unmodified applications, treating them as
black boxes, and therefore cannot make such statements
about application semantics. Indeed, a buggy application
might expose its own sensitive data (e.g. via a buffer
overflow), even if the OS behaves correctly. Thus, our
problem must be one of ensuring that applications run
correctly, rather than one of protecting application data.

Approaches to ensuring security. To ensure that pro-
grams that make system calls execute correctly, we must
guarantee that the action performed and value returned
by each system call is correct, in that it conforms to the
application’s model of how system calls behave. Ideally,
we would like this model to be the same as the standard
OS contract for system calls (e.g. the POSIX specifica-
tion). However, fully achieving this goal is unlikely to be
possible without reimplementing nearly the entire OS in
the trusted components. Moreover, there may be behav-
ior that complies with the specification, but still violates
application assumptions.

Instead, we propose to develop a new specification
consisting only of safety properties, i.e. a model of nor-
mal OS semantics that pertains only to security, not to
availability. By weakening the specification to only pro-

Submitted to HotSec ’08 2



vide safety properties, it becomes easier to hold the OS
to its contract. For example, with the mutex system call
described above, we might guarantee only that if a lock is
granted, it is held by no other thread, saying nothing about
availability or fairness. Providing weaker semantics does
mean that it is impossible to guarantee correctness of
arbitrary unmodified applications, but we anticipate that
the additional requirements will not pose a large burden
for developers, and correspond in many cases to good
programming practice on a correctly functioning OS.

There are three fundamental methods for ensuring that
system calls are executed correctly:

• We can disallow use of the system call in security-
critical code, permitting applications to use it “only
at their own risk.” Clearly, this is to be avoided
from a compatibility perspective. However, certain
system calls are so intimately related to the OS im-
plementation that their correctness cannot be guaran-
teed — for example, those related to kernel modules
or scheduling policies.

• We can emulate the system call in trusted code.
This option should also be used sparingly, since
reimplementing system calls adds to the size of the
TCB. Nevertheless, it may be the best option for
simpler system calls, such as those related to time.

• We can verify the results of the system call after
the OS has executed it. In many cases, this can
be substantially simpler than emulating it. This is
the approach that Overshadow and XOM already
use for protecting memory: they delegate memory
management to the OS, but verify hashes at access
time to ensure that the correct data is in the correct
memory location.

We propose to implement emulation and verification
using Overshadow’s existing system call interposition
mechanism, which redirects control to the shim, a trusted
component, whenever an application makes a system call.
However, these techniques can be used independently of
Overshadow, by using a different interposition technique,
or by modifying the application.

Returning to the example of the mutex system call,
we can verify that only one thread holds the lock at once
using a flag stored in a protected shared memory region to
indicate whether the lock is held. Each thread will update
the flag whenever it acquires or releases the lock, and
verifies that the flag is not already set when it acquires the
lock. This is a very simple procedure, but it nevertheless
ensures the key safety property of locking while still
delegating the rest of the implementation details (waking
up the right process when the lock is available, ensuring
fairness, etc.) to the OS.

4 Attacks and Mitigations
We now turn our attention to specific OS features that
applications commonly depend upon. For each feature,
we examine how a malicious OS might use it to mount an
attack on an application, and whether that functionality
can be securely delegated to the OS using a verifiable
interface.

4.1 File System
One of the most important services provided by the OS
is access to persistent storage; it is also particularly crit-
ical for security, since both the program code and its
(potentially sensitive) data are stored on the file system.

4.1.1 File Contents
Potential attacks. Protection is clearly needed for file
contents. If files are stored unprotected, a malicious oper-
ating system could directly read an application’s secret
data as soon as it is written to disk. A malicious OS could
also tamper with application binaries, replacing an appli-
cation with code that simply prints out its sensitive data.
It might also launch a replay attack, reverting a file to an
earlier version, perhaps replacing a patched application
with an earlier version that contains a buffer overflow.

Proposed solution. Most protection architectures al-
ready provide some protection for file contents, thereby
thwarting these attacks. For example, Overshadow’s cryp-
tographic secrecy and integrity protection extends to files
stored on disk as well as memory. This is accomplished
by translating all file I/O system calls into operations on
memory-mapped file buffers. Since these buffers consist
of memory pages that are shared between the applica-
tion and the kernel, they are automatically encrypted and
hashed when the OS flushes them to disk. To defend
against tampering, reordering, and replay attacks on file
contents, Overshadow maintains protection metadata for
each file, consisting of a secure hash of each page in the
file, in addition to the randomly-chosen block cipher ini-
tialization vectors. This protection metadata is protected
by a MAC, and stored in the untrusted guest file system.

4.1.2 File Metadata
Potential attacks. More subtly, file metadata needs to
be protected, including file names, sizes, and modifica-
tion times. Many designs omit this aspect, relying on the
OS for services such as pathname resolution. As a result,
a malicious OS could perform a pathname lookup incor-
rectly. Even a system that protects file contents may be
subverted if the OS redirects a request for a protected file
to a different but still valid protected file. For example,
with Overshadow’s file protection mechanism described
above, such an attack could succeed if the OS also redi-
rected the access to the protection metadata file. It can

Submitted to HotSec ’08 3



only redirect file lookups to valid, existing protected files,
but this still opens many possibilities for attack, such as
redirecting a web server’s request for index.html to
its private key file instead.

Proposed solution. We propose using a trusted, pro-
tected daemon to maintain a secure namespace, mapping
a file’s pathname to the associated protection metadata.
Applications can communicate with this daemon over
a protected IPC channel (as described in Section 4.2),
requesting directory lookups when files are opened, and
updating the namespace when files or directories are cre-
ated, removed, or renamed. Maintaining this namespace
requires adding code for directory lookups to the TCB,
but this can be far smaller than a full file system imple-
mentation. This design was proposed in Overshadow [2],
and also used in VPFS [12], a similar file system archi-
tecture for L4 that uses a small trusted server and an
untrusted commodity file system to reduce TCB size.

Alternatively, as noted in [12], storing a hash of a file’s
pathname in its header provides a much simpler way to
verify that pathnames are looked up correctly, but does
not allow directory contents to be enumerated.

Similar ideas are used by other systems that build se-
cure storage on an untrusted medium. VPFS also uses
a trusted server to store file system metadata, although
it uses different techniques to secure file contents [12].
SUNDR [6] and Sirius [4] are distributed file systems
that use client-side cryptography to avoid trusting the file
server; because they have no trusted storage, they cannot
guarantee freshness, and are therefore subject to fork at-
tacks, where the file server presents different versions to
different clients. Like TDB [8], we have available a small
amount of trusted storage (in our case, in the VMM) that
can be used to guarantee freshness.

4.2 IPC
A trusted inter-process communication mechanism is a
key component of a secure system. In addition to protect-
ing application communications, it is a useful building
block for constructing other secure components; for ex-
ample, it is necessary for communicating with the file
system namespace daemon.

Potential attacks. Inter-process communication chan-
nels provided by the OS are insecure, and thus face all of
the standard problems inherent in communication over
an untrusted channel. A malicious OS might spy on IPC
messages between protected processes, or might tamper
with, drop, delay, reorder, or spoof messages.

Many attacks are possible as a result. For example, a
secure application might consist of a database of sensitive
information such as credit card numbers that accessible
only through a restricted web interface. A malicious
OS could observe the credit card numbers as they are

transmitted over the web server’s IPC connection to the
database server, or it could tamper with the database by
sending spoofed requests over the IPC connection.

More subtle attacks are also possible, much like the
attacks on file metadata. Rather than directly inspect
the contents a protected application’s IPC channel, the
OS might redirect the connection to point to a differ-
ent process which would then expose the data, such as
/bin/cat. The OS could also simply refuse to deliver
any messages between two processes.

Proposed solution. One way to provide secure IPC is
to implement it entirely in the trusted layer, by setting
up a message queue in the VMM. Processes could then
enqueue messages or check for pending messages via
secure hypercall. A problem with this approach is that it
is impractical for applications to poll for messages, since
this either requires waking up each process regularly, or
tolerating a high message latency. However, we can use
the guest operating system to provide asynchronous noti-
fications: after sending a message through the VMM, the
sender also sends the receiving process a signal through
the guest OS. Because the guest OS does not handle mes-
sage data, it cannot impact confidentiality, integrity, or
ordering; the OS is relied upon only for availability.

However, although this approach is suitable for small,
infrequent messages, it is not ideal for large data transfers,
both because of the need to copy data into and out of the
VMM, and to keep VMM complexity to a minimum.
Instead, we can use shared memory regions for most of
the communication, using VMM-assisted communication
only for bootstrapping the secure channel. Specifically, a
protected process wishing to communicate with another
process in the same compartment would create a shared
memory region (e.g. using mmap), and populate it with a
pair of message queues. Using Overshadow’s protection
mechanism for memory-mapped file contents, the OS
cannot read or modify the contents of the shared memory
region. However, the OS manages the namespace of
these shared memory regions, so it might still attempt to
map in a different region, such as the one corresponding
to a different IPC channel. To defend against this, the
sender can place a random nonce in the memory region,
and communicate it securely to the recipient through the
VMM. As before, the untrusted OS’s signals can be used
as asynchronous notifications.

Implementing IPC in this way guarantees secrecy, in-
tegrity, and ordering, but there cannot be any guarantees
that messages are received in a timely manner (or at all)
when the operating system could delay or terminate one
of the processes involved. We could have added acknowl-
edgements to our message-passing protocol, blocking the
sender until the receiver acknowledges the message, but
chose not to because the OS could still stop the receiving

Submitted to HotSec ’08 4



process after it acknowledges the message but before act-
ing on it. Instead, we require that applications not assume
messages have been received unless they implement their
own acknowledgement protocol. This is sound practice
even with a correctly functioning OS, as the receiving
process might be slow or have crashed.

4.3 Process Management
The OS is responsible for the management of processes,
including starting new processes and terminating existing
processes. In addition, it manages process identities,
which applications rely on for directing signals and IPC
messages. This opens several avenues of attack.

Potential attacks. Although the OS cannot interfere
with program execution contexts and control flow dur-
ing normal operation, it might be able to do so when
a new process is started. For example, when a process
forks, it might initialize the child’s memory with ma-
licious code instead of the parent’s, or set the starting
instruction pointer to a different location. Signal deliv-
ery also presents an opportunity for a malicious OS to
interfere with program control flow, since the standard
implementation involves the OS redirecting a program’s
execution to a signal handler.

A malicious OS might try to redirect signals, process
return values, or other information to the wrong process.
It might attempt to change a process’s ID while it is
running, or send the wrong child process ID to a parent.

Proposed solution. Solutions for securing control
flow for newly-created processes are relatively well-
understood. Overshadow interposes on clone and
fork system calls to set up the new thread’s initial state.
This includes cloning the memory integrity hashes and
thread context (including the instruction pointer), thereby
ensuring that the new thread can only be started in the
same state as its parent.

To ensure that signals are delivered to the correct entry
point, Overshadow also maintains its own protected table
of the application’s signal handlers. It registers only a
single signal handler with the kernel, which immediately
makes a hypercall to the VMM. The VMM then securely
transfers control to the appropriate signal handler.

We can address the problems related to the OS man-
aging process identity by using an independent process
identity in conjunction with the secure IPC mechanism
described in Section 4.2. Whenever a new process is
created, it is assigned a secure process ID (SPID) to iden-
tify it for secure IPC purposes; this is an identifier that
is conceptually independent of the OS’s process ID, al-
though with a correctly functioning OS there will be a
one-to-one relationship. When a process is forked, The
SPID is communicated to the parent, along with the OS’s
process ID, via a secure IPC message. When one pro-

cess wants to send another a signal, it sends a secure IPC
message identifying itself and the signal. Similarly, when
a process exits, it sends its return value securely to its
parent.

4.4 Time and Randomness
Potential attacks. The operating system maintains the
system clock, which means that security-critical appli-
cations cannot rely on it. A malicious OS could speed
up or slow down the clock, which could allow it to sub-
vert expiration mechanisms in protocols like Kerberos or
time-based authentication schemes. It might also cause
the clock to move backwards, an unexpected situation
that could expose bugs in application code.

In addition, the standard system source of randomness
comes from the OS, making it unsuitable for use in cryp-
tographic applications. A malicious OS could use this
to control private keys generated by an application, or
defeat many cryptographic protocols.

Proposed solution. We see little solution other than
to create a trusted clock and source of secure random-
ness. In our system, these would be implemented in
the VMM, and time-related system calls and access to
/dev/random would be transformed into hypercalls.

4.5 I/O
Potential attacks. An application’s input and output
paths to the external world go through the operating sys-
tem, including video output and user input. The OS can
observe traffic across these channels, capturing sensitive
data as it is displayed on the screen, or input as the user
types it in (e.g. passwords). It could also send fake user
input to a protected application, or display malicious
output, such as a fake password entry window.

Network I/O also depends on the operating system, but
this poses less of a problem because many applications
already treat the network as an untrusted entity. Crypto-
graphic protocols such as SSL are sufficient to solve this
problem, and are already in common use.

Proposed solution. There are many complex issues
inherent in designing a secure GUI, such as labelling
windows and securing passphrase entry; many of these
have been studied extensively in the context of multi-
level secure operating systems [1, 9]. We do not address
them here, but focus on the question of how to achieve a
trusted path that does not rely on the operating system.

A simple approach that maintains backwards-
compatibility with existing applications is to run a dedi-
cated, trusted X server in the application’s compartment.
Overshadow’s memory protection can ensure that only
the application and the virtual graphics card can access
the server’s framebuffer in unencrypted form. Unfortu-
nately, this approach requires adding the entire X server

Submitted to HotSec ’08 5



and its dependencies to the application’s TCB.
Given the undesirability of trusting the entire display

server, we would like the ability to use an untrusted dis-
play server that manages the display without having ac-
cess to the contents of windows. It seems possible to
achieve this using a window system architecture where
applications render their window contents into buffers,
and the window server simply composites them. It is
not clear, however, how to implement this in a way that
maintains compatibility with existing applications.

4.6 Identity Management
The OS is responsible for managing a number of types of
identities; we have already discussed the need to secure
file system names and process IDs. Several others also ex-
ist, including user and group IDs and network endpoints
(IP addresses, DNS names, and port numbers).

Potential attacks. These OS-managed identities are
frequently used in authentication: applications often use
the user ID of a local process or the IP address of a remote
host to determine whether to grant access to a client. A
malicious OS could cause a connection from an attacker
to appear to be coming from a trusted local user or host.

Proposed solution. Applications should not rely on
these identities for authentication or other security-
critical purposes. Secure authentication can be imple-
mented cryptographically for either local or remote con-
nections. It may also sometimes be possible to securely
authenticate a local connection simply by verifying that
the remote endpoint is in the same secure compartment.

4.7 Error Handling
When a system call fails, the operating system may re-
turn an incorrect error return value to the application.
There are two types of violations. De jure violations,
where the OS returns a value that is clearly invalid ac-
cording to the system call specification, such as returning
a “bad file descriptor” error on a fork call, are relatively
straightforward to deal with. We can simply verify that
all system call return values are compliant. De facto vio-
lations, where the OS returns a legitimate error code for
an error that did not take place, are more troublesome
because we cannot always detect them. For example, the
operating system might return a “network unreachable”
error on connect, even if no network error took place.
In general, there is little that can be done other than to re-
quire that applications not rely on the error return values
being accurate for correctness.

5 Conclusions
Our experience in building the Overshadow system for
enhancing assurance of applications built on commodity
operating systems has suggested two key lessons. First,

systems looking to enhance OS assurance typically focus
on core isolation mechanisms such as memory and CPU
protection, but this is not sufficient to build a secure
system. We observe that additional attention must be
paid to how applications are affected by malicious OS
behavior. To talk about “trusted” and “untrusted” parts of
the OS interface without looking more deeply into what
can and cannot be safely relied upon from the OS, is to
casually dismiss a non-trivial problem.

Next, we observe that it is often easier to verify correct
behavior than to implement that behavior, i.e. OS compo-
nents can often be refactored into a small trusted part that
verifies the safety properties and a larger untrusted part
that manages the system resource in question. We pro-
pose extensions to Overshadow that allow it to tolerate
more complex malicious behavior from the OS, based on
this principle of verifying system call results, and argue
that the principles involved are relevant to other systems.

References
[1] J. L. Berger, J. Picciotto, J. P. L. Woodward, and P. T. Cummings.

Compartmented mode workstation: Prototype highlights. Trans-
actions on Software Engineering, 16(2):608–618, June 1990.

[2] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. K. Ports. Over-
shadow: A virtualization-based approach to retrofitting protection
in commodity operating systems. In Proc. ASPLOS ’08, Seattle,
WA, Mar. 2008.

[3] P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Will-
man. A trusted open platform. IEEE Spectrum, 36(7):55–62, July
2003.

[4] E.-J. Goh, H. Shacam, N. Modadugu, and D. Boneh. SiRiUS:
Securing remote untrusted storage. In Proc. NDSS ’03, San Diego,
CA, Feb. 2003.

[5] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski,
F. Mehnert, and M. Peter. The Nizza secure-system architecture.
In Proc. CollaborateCom ’05, San Jose, CA, Dec. 2005.

[6] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted
data repository (SUNDR). In Proc. OSDI ’04, San Francisco, CA,
Dec. 2004.

[7] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for copy
and tamper resistant software. In Proc. ASPLOS ’00, Cambridge,
MA, Nov. 2000.

[8] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a
trusted database system on untrusted storage. In Proc. OSDI ’00),
San Diego, CA, Oct. 2000.

[9] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia.
Design of the EROS trusted window system. In Proc. USENIX
Security ’04, San Diego, CA, Aug. 2004.

[10] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth. Reducing TCB
complexity for security-sensitive applications: Three case studies.
In Proc. EuroSys ’06, 2006.

[11] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making trust
between applications and operating systems configurable. In Proc.
OSDI ’06, Seattle, WA, Nov. 2006.

[12] C. Weinhold and H. Härtig. VPFS: Building a virtual private file
system with a small trusted computing base. In Proc. EuroSys

’08, Glasgow, Scotland, Apr. 2008.

Submitted to HotSec ’08 6


