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ABSTRACT
Distributed storage systems aim to provide strong consis-
tency and isolation guarantees on an architecture that is parti-
tioned across multiple shards for scalability and replicated for
fault tolerance. Traditionally, achieving all of these goals has
required an expensive combination of atomic commitment
and replication protocols – introducing extensive coordina-
tion overhead. Our system, Eris, takes a different approach.
It moves a core piece of concurrency control functionality,
which we term multi-sequencing, into the datacenter network
itself. This network primitive takes on the responsibility for
consistently ordering transactions, and a new lightweight
transaction protocol ensures atomicity.

The end result is that Eris avoids both replication and trans-
action coordination overhead: we show that it can process a
large class of distributed transactions in a single round-trip
from the client to the storage system without any explicit co-
ordination between shards or replicas in the normal case. It
provides atomicity, consistency, and fault tolerance with less
than 10% overhead – achieving throughput 3.6–35× higher
and latency 72–80% lower than a conventional design on
standard benchmarks.

CCS CONCEPTS
• Information systems → Database transaction process-
ing; Distributed database transactions; • Networks → In-
network processing; Data center networks; • Computer sys-
tems organization → Reliability;
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1 INTRODUCTION
Distributed storage systems today face a tension between
transactional semantics and performance. To meet the de-
mands of large-scale applications, these storage systems must
be partitioned for scalability and replicated for availability.
Supporting strong consistency and strict serializability would
give the system the same semantics as a single system exe-
cuting each transaction in isolation – freeing programmers
from the need to reason about consistency and concurrency.
Unfortunately, doing so is often at odds with the performance
requirements of modern applications, which demand not just
high scalability but also tight latency bounds. Interactive ap-
plications now require contacting hundreds or thousands of
individual storage services on each request, potentially leav-
ing individual transactions with sub-millisecond latency bud-
gets [23, 49].

The conventional wisdom is that transaction processing
systems cannot meet these performance requirements due to
coordination costs. A traditional architecture calls for each
transaction to be carefully orchestrated through a dizzying
array of coordination protocols – e.g., Paxos for replication,
two-phase commit for atomicity, and two-phase locking for
isolation – each adding its own overhead. As we show in
Section 8, this can increase latency and reduce throughput by
an order of magnitude or more.

This paper challenges that conventional wisdom with Eris,1

a new system for high-performance distributed transaction
processing. Eris is optimized for high throughput and low
latency in the datacenter environment. Eris executes an im-
portant class of transactions with no coordination overhead

1Eris takes its name from the ancient Greek goddess of discord, i.e., lack of
coordination.

https://doi.org/10.1145/3132747.3132751
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whatsoever – neither from concurrency control, atomic com-
mitment, nor replication – and fully generic transactions with
minimal overhead. It is able to execute a variety of workloads,
including TPC-C [61], with less than 10% overhead compared
to a non-transactional, unreplicated system.

The Eris architecture divides the responsibility for transac-
tion isolation, fault tolerance, and atomic coordination in
a new way. Eris isolates the core problem of transaction
sequencing using independent transactions [21, 56], then
optimizes their processing with a new network-integrated
protocol. An independent transaction represents an atomic
execution of a single, one-shot code block across multiple
shards [21]. This abstraction is a useful one in itself – many
workloads can be expressed solely using independent trans-
actions [36] – as well as a building block for more complex
operations.

The main contribution of Eris is a new protocol that can
establish a linearizable order of execution for independent
transactions and consensus on transaction commit without
explicit coordination. Eris uses the datacenter network itself
as a concurrency control mechanism for assigning transac-
tion order. We define and implement a new network-level
abstraction, multi-sequencing, which ensures that messages
are delivered to all replicas of each shard in a consistent order
and detects lost messages. Eris augments this network-level
abstraction with an application-level protocol that ensures
reliable delivery. In the normal case, this protocol is capable
of committing independent transactions in a single round trip
from clients to server, without requiring servers to communi-
cate with each other.

Eris builds on recent work that uses network-level sequenc-
ing to order requests in replicated systems [22, 43, 54]. Se-
quencing transactions in a partitioned system (i.e., multi-
sequencing) is substantially more challenging than ordering
operations to a single replica group, as servers in different
shards do not see the same set of operations, yet must ensure
that they execute cross-shard transactions in a consistent or-
der. Eris addresses this with a new concept, the multi-stamp,
which provides enough information to sequence transactions,
and can be implemented readily in an in-network sequencer.

While independent transactions are useful, they do not
capture all possible operations. We show that independent
transactions can be used as a building block to execute fully
general transactions. Eris uses preliminary transactions to
gather read dependencies, then commits them with a single
conclusory independent transaction. Although doing so im-
poses locking overhead, by leveraging the high performance
of the underlying independent transaction primitive, it contin-
ues to outperform conventional approaches that must handle
replication and coordination separately.

We evaluate Eris experimentally and demonstrate that it
provides throughput 3.6–35× higher and latency 72–80%
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Figure 1: Standard layered architecture for a partitioned, repli-
cated storage system

lower than a conventional design (two-phase commit with
Paxos and locking). Because Eris can execute most trans-
actions in a single round trip without communication be-
tween servers, it achieves performance within 3% of a non-
transactional, unreplicated system on the TPC-C benchmark,
demonstrating that strong transactionality, consistency, and
fault tolerance guarantees can be achieved without a perfor-
mance penalty.

2 BACKGROUND
We consider storage systems that are partitioned for scala-
bility, and replicated for fault tolerance. Data is partitioned
among different shards, each consisting of multiple replicas
with copies of all shard data. Clients (e.g., front-end servers)
submit transactions to be processed. We limit ourselves here
to systems where all nodes are located in the same datacenter.

A storage system should provide several guarantees. Every
transaction should be applied to all shards it affects, or none
at all (atomicity). The execution should be identical to each
transaction being executed in sequence (strict serializable
isolation). And these guarantees should hold even though
some of the nodes in each shard can fail (fault tolerance).

2.1 The Status Quo: Extensive Coordination
Existing systems generally achieve these goals using a layered
approach, as shown in Figure 1. A replication protocol (e.g.,
Paxos [40]) provides fault tolerance within each shard. Across
shards, an atomic commitment protocol (e.g., two-phase com-
mit) provides atomicity and is combined with a concurrency
control protocol (e.g., two-phase locking or optimistic con-
currency control). Though the specific protocols differ, many
systems use this structure [2, 3, 16, 19, 21, 29, 38, 47].

A consequence is that coordinating a single transaction
commit requires multiple rounds of coordination. As an ex-
ample, Figure 2 shows the protocol exchange required to
commit a transaction in a conventional layered architecture
like Google’s Spanner [19]. Each phase of the two-phase
commit protocol requires synchronously executing a replica-
tion protocol to make the transaction coordination decision
persistent. Moreover, two-phase locking requires that locks
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Figure 2: Coordination required to commit a single transaction
with traditional two-phase commit and replication

be held between prepare and commit operations, blocking
conflicting transactions. This combination seriously impacts
system performance.

3 ERIS DESIGN PRINCIPLES
Eris takes a different approach to transaction coordination
that allows it to achieve higher performance. It is based on
the following three principles:

Principle 1: Separating Ordering from Execution. Tradi-
tional coordination protocols establish the serializable order
of transactions concurrently with executing those transactions,
e.g., as a result of the locks that are acquired during execution.
Eris explicitly separates the task of establishing the serial
order of transactions from their execution, allowing it to use
an optimized protocol for transaction ordering.

To make this possible, the Eris protocol relies on a spe-
cialized transaction model: independent transactions [21]. In-
dependent transactions apply concurrent changes atomically
at multiple shards, but forbid cross-shard data dependencies
(we make this definition precise in Section 4.1). Indepen-
dent transactions have the key property that executing them
sequentially at each shard in global sequence order guaran-
tees serializability. That is, establishing a global serial order
allows transaction execution to proceed without further coor-
dination.

Principle 2: Rapid Ordering with In-Network Concurrency
Control. How quickly can we establish a global order of in-
dependent transactions? Existing systems require each of the
participating shards in a transaction to coordinate with each
other in order to ensure that transactions are processed at
each affected shard in a consistent order. This requires at least
one round of communication before the transaction can be
executed, impeding system performance.

Eris establishes a global order of transactions with minimal
latency by using the network itself to sequence requests. Re-
cent work has shown that network-level processing elements

can be used to assign a sequence number to each message
destined for a replica group, making it possible to detect mes-
sages that are dropped or delivered out of order [43]. Eris
takes this approach further, using the network to sequence
multiple streams of operations destined for different shards.
The key primitive, multi-sequencing, atomically applies a
sequence number for each destination of a message, establish-
ing a global order of messages and ensuring that any recipient
can detect lost or reordered messages. Eris uses this to build
a transaction processing protocol where coordination is not
required unless messages are lost.

Principle 3: Unifying Replication and Transaction Coordi-
nation. Traditional layered designs use separate protocols for
atomic commitment of transactions across shards and for repli-
cation of operations within an individual shard. While this
separation provides modularity, it has been recently observed
that it leads to redundant coordination between the two lay-
ers [66]. Protocols that integrate cross-shard coordination and
intra-shard replication into a unified protocol have been able
to achieve higher throughput and lower latency [38, 48, 66].

This approach integrates particularly well with Eris’s in-
network concurrency control. Because requests are sequenced
by the network, each individual replica in a shard can inde-
pendently process requests in the same order. As a result, in
the common case Eris can execute independent transactions
in a single round trip, without requiring either cross-shard or
intra-shard coordination.

4 ERIS ARCHITECTURE
Eris divides the responsibility for different guarantees in a
new way, enabling it to execute many transactions without
coordination. The protocol itself is divided into three layers,
as shown in Figure 3:

(1) The in-network concurrency control layer (Section 5)
uses a new network primitive to establish a consistent
ordering of transactions, both within and across shards,
but does not guarantee reliable message delivery.

(2) The independent transaction layer (Section 6) adds
reliability and atomicity to the ordered operations, en-
suring that each transaction is eventually executed at
all non-faulty replicas within each shard (or fails en-
tirely). This combination of ordering and reliability is
sufficient to guarantee linearizability for an important
class of transactions.

(3) The general transaction layer (Section 7) provides iso-
lation for fully general transactions, by building them
out of independent transactions and relying on the lin-
earizable execution provided by other layers.
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Figure 3: The layers of Eris and the guarantees they provide

4.1 Transaction Model
Transactions in Eris come in two flavors. The core transaction
sequencing layer handles independent transactions. These can
be used directly by many applications, and doing so offers
higher performance. Eris also supports general transactions.

Independent transactions are one-shot operations (i.e.,
stored procedures) that are executed atomically across a set
of participants. That is, the transaction consists of a piece
of code to be executed on a subset of shards. These stored
procedures cannot interact with the client, nor can different
shards communicate during their execution. Each shard must
independently come to the same “commit” or “abort” decision
without coordination—e.g., by always committing. This defi-
nition of independent transactions is taken from Granola [21];
essentially the same definition was previously proposed by the
authors of H-Store [56] under the name “strongly two-phase”.

Like the H-Store architecture, in our implementation of
Eris, the underlying data store executes independent transac-
tions sequentially on each participant, without concurrency.
This allows it to avoid the overhead of lock- and latch-based
synchronization, which collectively amount to as much as
30% of the execution cost of traditional DBMS designs [30].
This architecture restricts transaction execution to a single
thread. Multicore systems can operate one logical partition
per core, at the cost of potentially increasing the number of
distributed transactions.

Although the independent transaction model is restrictive,
it captures many common classes of transactions. Any read-
only transaction can be expressed as an independent trans-
action; Eris’s semantics make it a consistent snapshot read.
Any one-round distributed read/write transaction that always
commits (e.g., unconditionally incrementing a set of values)
is an independent transaction. Finally, data replicated across
different shards (as is common for frequently accessed data)
can be updated consistently with an independent transaction.
Prior work has shown that many applications consist largely
or entirely of independent transactions [20, 21, 56]. As one
example, TPC-C [61], an industry standard benchmark de-
signed to represent transaction processing workloads, can be

expressed entirely using independent transactions, despite its
complexity [56].

General transactions provide a standard interactive trans-
action model. Clients begin a transaction, then execute a
sequence of reads and writes at different shards; each may de-
pend on the results of previous operations. Finally, the client
decides whether to Commit or Abort the transaction. These can
be used to implement any transaction processing workload.

5 IN-NETWORK CONCURRENCY
CONTROL

Traditional transaction processing systems are network-
oblivious, relying on application-level protocols for every-
thing from sequencing operations to ensuring that messages
are delivered to the right participants. Recent work has demon-
strated that it is possible to accelerate coordination for repli-
cated systems by using advanced processing capabilities in
the network layer to build sequencing primitives [43, 54].
However, large-scale transaction processing presents major
new challenges.

Using a dedicated sequencing component is not, in itself,
a new idea. Sequencers have previously been used to ac-
celerate consensus [4, 34] and transaction processing sys-
tems [9, 28, 53, 62], and have been implemented in soft-
ware [4, 53], using RDMA NICs [35], and using in-network
processing components [43]. In particular, NOPaxos [43]
showed that it is possible to build a network-level device that
assigns globally consistent, consecutive sequence numbers to
all packets destined for a replica group. Sequence numbers
allow receivers to reject messages that arrive out of order, and
to detect dropped messages (as gaps in the sequence num-
bers). These, in turn, enable an optimized replication protocol
where replicas only need to coordinate when messages are
lost or reordered in the network.

Can the same be done for transaction processing? In this
paper, we show that existing network-layer mechanisms (in-
cluding NOPaxos’s OUM) are not suited for this purpose.
They establish an order over a set of messages to a single des-
tination group, while coordination-free transaction execution
requires a consistent ordering across messages delivered to
many destination shards. Eris’s contribution is an in-network
concurrency control primitive that establishes such an order-
ing and allows receivers to detect dropped messages, along
with a strategy to realize this primitive efficiently in pro-
grammable switch architectures.

Part of achieving this ordering is making the set of transac-
tion participants explicit to the network layer. Traditionally,
clients send transactions to multiple groups by sending sep-
arate multicast messages to each group (or, often, separate
unicast messages to each member of each group). This makes
it impossible to guarantee a meaningful order at the network
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level: without knowing which separate messages correspond
to the same logical operation, one cannot guarantee a con-
sistent ordering across different transaction participants. To
address this semantic gap, we introduce two new concepts:

• Groupcast – an extended multicast primitive delivers
messages to a client-specified set of multicast groups.

• Multi-sequenced groupcast – a specialized groupcast
that guarantees messages are delivered to all groupcast
recipients in a globally consistent order. The multi-
sequenced groupcast primitive does not guarantee reli-
able delivery, but it does guarantee that recipients can
detect dropped messages.

An important goal of this design is to minimize the logic
required for the network. This simplifies implementation and
increases overall system reliability; end-to-end guarantees are
enforced in the application. The primitives that we identify are
sophisticated enough to enable the Eris transaction processing
algorithm and thus dramatically increase system performance,
but simple enough to be readily and efficiently implemented
in a variety of network devices.

5.1 Why Multi-Sequencing?
Our work extends the OUM model [43] to the multi-group
environment of transaction processing. This requires mes-
sages to be sequenced atomically for multiple replica groups
with the same guarantees. To illustrate the need for such an
ordering mechanism, and the challenges in achieving one, we
consider two straw-man proposals:

1) Total Global Sequencing. Consider first applying the
OUM approach directly to the entire storage system, using
a single sequencer. All transactions are sent through this se-
quencer, which assigns each a sequence number, then for-
wards them to all replicas of all shards in the system. Because
of the single global sequence number, this design is capable
of ensuring both ordering (no two receivers process messages
in different orders) and drop detection (recipients are notified
of any dropped message). However, it requires every server
to receive every message involving any shard in the system,
clearly impeding system performance.

Note that it is not possible to adapt this design so that
messages are delivered only to replicas in the affected shards
while still maintaining ordering and drop detection. With a
global sequence number, a receiver seeing message n followed
by message n+ 2 cannot distinguish the case where it was
intended to receive message n+ 1 from the case in which
message n+1 was not sent to its shard.

2) Multiple Independent Sequencing. Alternatively, con-
sider employing the OUM approach by treating each shard
as a separate OUM group. Messages sent to a shard are se-
quenced independently of other shards and then delivered

to all replicas in the shard. Unlike total global sequencing,
with this approach messages are only delivered to the shards
that need to process them. Moreover, replicas in a shard can
detect dropped messages within a shard. However, ordering
and detection are not guaranteed across different shards. If
transactions T1 and T2 are each sent to both shards A and B, it
is possible that the sequencer for shard A processes T1 before
T2 while the sequencer for shard B processes T2 before T1. It
is also possible that a transaction processed by A’s sequencer
is dropped in the network before ever reaching B’s sequencer,
or vice versa. These anomalies could result in violations of
system correctness.

What is needed in order to ensure a correct, consistent
ordering is a way to ensure that messages delivered to mul-
tiple multicast groups are sequenced atomically across all
recipient groups. Our design below achieves this goal in two
parts. Groupcast provides a way for applications to direct
messages to multiple multicast groups, and multi-sequencing
ensures atomic sequencing across all destination groups. This
is achieved using a new technique, the multi-stamp.

5.2 Groupcast and Multi-sequenced
Groupcast

We begin by defining the properties of the groupcast and
multi-sequenced groupcast primitives.

Groupcast. Traditional multicast sends messages to a pre-
defined group of recipients, e.g., an IGMP group. Commu-
nication in a partitioned, replicated transaction processing
system does not fit this communication model well. Trans-
actions must be delivered to multiple groups of replicas, one
for each shard affected by the transaction; which groups are
involved varies depending on the transaction particulars.

We instead propose the groupcast primitive, where a mes-
sage is sent to multiple multicast groups. The set of destina-
tions is specified. In our design, this is achieved by sending
the message to a special groupcast IP address. Using SDN
rules, packets matching this destination IP address are pro-
cessed specially. An additional header located between the
IP and UDP headers specifies a list of destination groups; the
packet is delivered to each member of each group.

Multi-sequenced groupcast. Multi-sequencing extends the
groupcast primitive with additional ordering guarantees.
Namely, it provides the following properties:

• Unreliability. There is no guarantee that any message
will ever be delivered to its recipient.

• Partial Ordering. The set of all multi-sequenced
groupcast messages are partially ordered—with the re-
striction that any two messages with a destination group
in common are comparable. Furthermore, if m1 ≺ m2,
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and a receiver delivers both m1 and m2, then it delivers
m1 before m2.

• Drop Detection. Let R(m) be the set of recipients
of message m. For any message m, either: (1) ev-
ery receiver r ∈ R(m) delivers either m or a DROP-
NOTIFICATION for m, or (2) no receiver r ∈ R(m) deliv-
ers m or a DROP-NOTIFICATION for m.

Multi-sequencing can thus establish an ordering relation-
ship between messages with different sets of receivers. This
is an important distinction with OUM, which only supports
ordering within a single multicast group. Multi-sequencing
requires an ordering relationship between any two messages
that have some receiver in common, i.e., R(m1)∩R(m2) , /0.

5.3 Multi-Sequencing Design
Multi-sequenced groupcast is implemented using a central-
ized, network-level sequencer. One sequencer is designated
for the system at any time; it can be replaced when it fails. De-
pending on implementation (Section 5.4), the sequencer can
be either an end-host, a middlebox, or a sufficiently power-
ful switch. All multi-sequenced groupcast packets are routed
through this sequencer, which modifies them to reflect their
position in a global sequence. Receivers then ensure that they
only process messages in sequence number order.

The challenge for multi-sequenced groupcast is how the se-
quencer should modify packets. As described above, affixing
a single sequence number creates a global sequence, making
it possible to meet the ordering requirement but not the drop
detection requirement. In order to satisfy both requirements,
we introduce a new concept, the multi-stamp.

A multi-stamp is a set of ⟨group-id, sequence-num⟩ pairs,
one for each destination group of the message. To apply multi-
stamps, a sequencer maintains a separate counter for each
destination group it supports. Upon receiving a packet, it
parses the groupcast header, identifies the appropriate coun-
ters, increments each of them atomically, and writes the set
of counters into the packet header as a multi-stamp.

Including the full set of counters for each destination group
in the multi-stamp serves two purposes. First, each receiver
can ensure the ordering and drop detection properties. It
checks the appropriate sequence number for its group; if
the value is lower than that of the last delivered packet, this
indicates an out-of-order packet, and it is dropped. If the se-
quence number is higher than the next expected packet, this
indicates a potentially dropped packet, so the application (i.e.,
Eris) is notified. Second, a receiver can request a missing
packet by its sequence number, even from other groups.

Fault tolerance and epochs. Multi-sequencing requires the
sequencer to keep state: the latest sequence number for each
destination group. Of course, sequencers can fail. Rather than

trying to keep sequencer state persistent – which would re-
quire synchronous replication of the sequencer and complex
agreement protocols – we instead have the sequencer keep
only soft state, and expose sequencer failures to the applica-
tion.

To handle sequencer failures, we introduce a global epoch
number for the system. This number is maintained by the
sequencer, and added to the groupcast header along with
the multi-stamp. Responsibility for sequencer failover lies
with the SDN controller. When it suspects the sequencer of
having failed (e.g., after a timeout), it selects a new sequencer,
increments the epoch number, and installs that epoch number
in the new sequencer. Notice that delivery in lexicographic,
epoch number major, multi-stamp minor order satisfies the
partial ordering multi-sequencing requirement.

When a receiver receives a multi-sequenced groupcast mes-
sage with a higher epoch number than it has seen before, it
delivers a NEW-EPOCH notification to the application (i.e.,
Eris). This notifies the application that some packets may
have been lost; the application is responsible for reaching
agreement on which packets from the previous epoch were
successfully delivered before processing messages from the
next epoch.

As in OUM, the SDN must install strictly increasing epoch
numbers to successive sequencers [43]. For fault tolerance,
we replicate the controller using standard means, a common
practice [32, 37]. Alternatively, a new sequencer could set
its epoch number using the latest physical clock value, pro-
vided that clocks are sufficiently well synchronized to remain
monotonic in this context.

5.4 Implementation and Scalability
Our implementation of the Eris network layer includes the
in-network sequencer, an SDN controller, and an end-host
library to interface with applications like the Eris transaction
protocol. The SDN controller, implemented using POX [50],
manages groupcast membership and installs rules that route
groupcast traffic through the sequencer. The end-host library
provides an API for sending and receiving multi-sequenced
groupcast messages. In particular, it monitors the appropriate
sequence numbers on incoming multi-stamped messages and
sends the application DROP-NOTIFICATION or NEW-EPOCH
notifications as necessary.

The sequencer itself can be implemented in several ways.
We have built software-based prototypes that run on a con-
ventional end-host and a middlebox implemented using a
network processor, and evaluated their performance as shown
in Table 1. However, the highest-performance option is to
implement multi-sequenced groupcast functionality directly
in a switch. This is made possible by programmable network
dataplane architectures that support per-packet processing.
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In-switch designs. For maximum performance, we envision
multi-sequencing and groupcast being implemented directly
in network switches. Programmable network hardware ar-
chitectures such as Reconfigurable Match Tables [13], Intel
FlexPipe [52], Cavium XPliant [65], and Barefoot Tofino [6]
provide the necessary processing capability.

We have implemented multi-sequenced groupcast in the
P4 language [12], supporting compilation to several of these
future architectures. The complete P4 source code is avail-
able [42]. The hardware required to evaluate this approach
is not yet commercially available, though such products are
expected within the next year. We can, however, analyze the
resource usage of our design to understand the feasibility and
potential scalability of in-network concurrency control.

Consider a Reconfigurable Match Table (RMT) [13] archi-
tecture. This architecture provides a pipeline of stages that
match on header fields and perform actions. It also provides
stateful memory, one register of which can store each per-
shard counter. This design allows line-rate processing at ter-
abit speed, if the necessary functionality can be expressed in
the packet processing pipeline. The barrier to scalability, then,
is the number of shards to which a single multi-sequenced
groupcast packet can be addressed. Two resource constraints
govern this limit. The first is how many stateful counters
can be incremented on each packet. The RMT proposal spec-
ifies 32 stages, each with 4–6 register-attached ALUs per
stage, supporting 128–192 destinations per packet. Second,
the packet header vector containing fields used for matching
and action is limited to 512 bytes. Assuming 32-bit shard
IDs and counter values, this allows 116 simultaneous destina-
tions after accounting for IP and UDP headers. For very large
systems where transactions may span more than 100 shards,
it may be necessary to use special-case handling for global
(all-shard) messages.

Middlebox prototype. As sufficiently capable switches are
not yet available, we implement a multi-stamping sequencer
on a Cavium Octeon II CN6880 network processor. This
device contains 32 MIPS64 cores and provides low-latency
access to four 10 Gb/s Ethernet interfaces. We use the middle-
box implementation in our evaluation (Section 8). Although
it uses neither a heavily optimized implementation nor espe-
cially powerful hardware (the CN6880 was released in 2010),
it can process 6.19M multi-sequenced packets per second,
close to the maximum capacity of its 10 Gb/s link (7M pack-
ets/sec).

End-host sequencing. An alternate design option is to im-
plement the sequencing functionality on an end host. This
provides a more convenient deployment option for environ-
ments where the network infrastructure cannot be modified.
The tradeoff is this imposes higher latency (approximately
10 µs per transaction), and system throughput may be limited

Throughput (packets/second) Latency (µs)

Middlebox 6.19M (σ = 3.16K) 13.64 (σ = 0.42)
Endhost 1.61M (σ = 19.98K) 24.60 (σ = 1.02)

Table 1: Performance of endhost and middlebox sequencers

by sequencer capacity. Our straightforward implementation
of the multi-sequencer in user space on Linux can sequence
up to 1.61M requests per second on a 24-core Xeon E5-2680
machine, sufficient for smaller deployments. Low-level opti-
mizations and new hardware such as RDMA NICs can likely
improve this capacity [35].

6 PROCESSING INDEPENDENT
TRANSACTIONS

Eris’s independent transaction processing layer provides
single-copy linearizable2 (or strict serializable) semantics for
independent transactions. Independent transactions have the
property that executing them one-at-a-time at each shard guar-
antees strict serializable behavior, provided they are executed
in a consistent order. Network multi-sequencing establishes
just such an order over transactions. However, it does not
guarantee reliable delivery. Thus, for correctness Eris must
build reliable delivery semantics at the application layer and
ensure that replicas agree on which transactions to commit,
not their order. In the normal case, Eris is able to execute
independent transactions using only a single round trip from
the client to all replicas.

6.1 Overview
Eris uses a quorum-based protocol to maintain safety always
– even when servers and the underlying network behave asyn-
chronously – and availability even when up to f out of 2 f +1
replicas in any shard fail by crashing. Eris clients send inde-
pendent transactions directly to the replicas in the affected
shards using multi-sequenced groupcast and wait for replies
from a majority quorum from each shard. There is a sin-
gle Designated Learner (DL) replica in each shard. Only
this replica actually executes transactions synchronously; the
other replicas simply log them and execute them later. As
a result, Eris requires that clients wait for a response from
the DL before considering a quorum complete. Using a DL
serves two purposes. First, it allows single-round-trip execu-
tion without the need for speculation and rollback: only the
DL executes the request, and, unless it fails and is replaced,
it is involved in every transaction committed by the shard.
(NOPaxos [43] uses the same principle.) Second, only the DL
in each shard sends the transaction result to the client; the
2Linearizability is the strongest practical correctness condition for concurrent
objects [31]. It is equivalent to strict serializability for transactions; because
independent transactions are one-shot operations on each shard, we use the
term “linearizability” here.
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others only send an acknowledgment, avoiding unnecessary
network congestion at the client.

Eris must be resilient to replica failures (in particular, DL
failures) and network anomalies. In our multi-sequencing ab-
straction, these anomalies consist of DROP-NOTIFICATIONs
(when a multi-sequenced groupcast transaction is dropped
or reordered in the network) and NEW-EPOCH notifica-
tions (when a sequencer has been replaced). In Eris, fail-
ure of the DL is handled entirely within the shard by a
protocol similar in spirit to standard leader change proto-
cols [40, 43, 51]. DROP-NOTIFICATIONs and NEW-EPOCH
notifications, however, require coordination across shards. For
DROP-NOTIFICATIONs, all participant shards for the dropped
transaction must reach the same decision about whether or
not to discard the message. For NEW-EPOCH notifications, the
shards must ensure that they transition to the new epoch in a
consistent state.

To manage the complexity of these two failure cases, we
introduce a novel element to the Eris architecture: the Failure
Coordinator (FC). The FC is a service that coordinates with
the replicas to recover consistently from packet drops and
sequencer failures. The FC must be replicated using standard
means [39, 43, 51] to remain available. However, the overhead
of replication and coordination is not an issue: Eris invokes
the FC and incurs its overhead only in rare failure cases, not
in the normal path.

The state maintained by replicas is summarized in Figure 4.
Two important pieces of state are the view-num and epoch-
num, which track the current DL and multi-sequencing epoch.
Specifically, the DL for view-num v is replica number v mod
N, where N is the number of replicas in the shard. Eris replicas
and the FC tag all messages with their current epoch-num and
do not accept messages from previous epochs (except during
epoch change). If a replica ever receives a message from a
later epoch, it must use the FC to transition to the new epoch
before continuing.

Eris consists of five sub-protocols: the normal case proto-
col, the protocol to handle dropped messages, the protocol to
change the DL within a shard, the protocol to change epochs,
and the protocol to periodically synchronize replicas’ states
and allow all replicas to safely execute transactions. Below
we present all five. Some details are elided for brevity; full
details are in an accompanying technical report [42]. Through-
out these protocols, messages that are sent but not acknowl-
edged with the proper reply are retried. In particular, clients
repeatedly retry transactions until they receive the correct
responses; at-most-once semantics are guaranteed using the
standard technique of maintaining a table of the most recent
transaction from each client [45].

Replica:
• replica-id = ⟨shard-num, replica-num⟩
• status — one of Normal, ViewChange, EpochChange
• view-num — indicates which replica within the shard is be-

lieved to be the DL
• epoch-num — indicates which sequencer the replica is cur-

rently accepting transactions from
• log — independent transactions and NO-OPs in sequential

order
• temp-drops — set of tuples of the form ⟨epoch-num,

shard-num, sequence-num⟩, indicating which transactions the
replica has tentatively agreed to disregard

• perm-drops — indicates which transactions the FC has com-
mitted as permanently dropped

• un-drops — indicates which transactions the FC has committed
for processing

Figure 4: Local state of Eris replicas used for independent trans-
action processing
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Figure 5: Communication pattern of Eris in the normal case,
where the independent transaction is sent via multi-sequenced
groupcast to multiple shards, each consisting of 3 replicas (one
replica in each shard is a Designated Learner)

6.2 Normal Case
In the normal case, clients submit independent transactions
via the multi-sequencing layer, and each replica that receives
the message in order simply responds to the client; the DL
executes the transaction and includes the result. Thus, transac-
tions are processed in a single round trip. Figure 5 illustrates
this process.

(1) First, the client sends the transaction to all replica
groups for all participant shards, using multi-sequenced
groupcast.

(2) The replicas receive the transaction, place it in their
logs, and reply with ⟨REPLY, txn-index, view-num,
result⟩, where txn-index is the index of the transaction
in the replica’s log. Only the DL for the view actually
executes the transaction and includes its result; the other
replicas simply log the transaction.
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(3) The client waits for a view-consistent quorum reply
from each shard.

Here, a view-consistent quorum reply from a shard is a REPLY
from a majority of the shard’s replicas, with matching txn-
index, view-num, and epoch-num, including one from the DL.

Note that a replica cannot process a transaction if it has
a matching transaction identifier in its perm-drops or temp-
drops; if there is a matching identifier in its perm-drops, it
inserts a NO-OP into its log in the transaction’s place and
continues—otherwise the replica must wait. A matching iden-
tifier in its perm-drops or temp-drops indicates that the FC
considers the transaction definitively or potentially failed, as
discussed below.

6.3 Dropped Messages
Replicas receive DROP-NOTIFICATIONs from the multi-
sequencing layer when they miss a message intended for
their shard because of a network anomaly. Here, atomicity re-
quires that either every participant shard learn and execute the
missing transaction (as in Section 6.2), or that none execute
it. This process is coordinated by the FC, which contacts the
other nodes in the system in an attempt to recover the missing
transaction. If any node has a copy of the missing transaction,
the FC sends it to the other replicas. Otherwise, the FC uses a
round of agreement to ensure that all replicas agree to drop
the transaction and move on.

(1) When a replica in a shard detects that it missed some
transaction, it sends ⟨FIND-TXN, txn-id⟩ to the FC,
where txn-id is a triple of the replica’s shard-num, its
current epoch-num, and its shard’s sequence number
for the message.

(2) The FC receives this FIND-TXN and (assuming that it
hasn’t already found or dropped the missing transac-
tion) broadcasts ⟨TXN-REQUEST, txn-id⟩ to all replicas
in all shards.

(3) When a replica receives TXN-REQUEST, if it has
received a transaction matching txn-id, it replies
with ⟨HAS-TXN, txn⟩. Otherwise, it adds txn-id to
temp-drops and replies with ⟨TEMP-DROPPED-TXN,
view-num, txn-id⟩.
Once a replica sends TEMP-DROPPED-TXN, it cedes
control of that transaction’s fate to the FC: even if it
later receives the transaction, it cannot process it until
it has learned whether the FC has found or permanently
dropped the transaction.

(4) The FC waits for either a quorum of TEMP-DROPPED-
TXNs from every shard or a single HAS-TXN, whichever
comes first. As before, each quorum must be view-
consistent and include the DL of the view.
If the FC first receives the HAS-TXN and hasn’t pre-
viously dropped the transaction, it saves it and sends

⟨TXN-FOUND, txn⟩ to all participants in the transac-
tion.
If it first receives the necessary TEMP-DROPPED-TXNs
(or receives HAS-TXN, having previously dropped the
transaction), it decides that the transaction matching txn-
id is permanently dropped and sends ⟨TXN-DROPPED,
txn-id⟩ to all replicas.

(5) When a replica hears back from the FC, if it receives
a TXN-FOUND, it adds the transaction to its un-drops,
adding the transaction to its log and replying to the
client. If it receives a TXN-DROPPED, it adds the txn-id
to perm-drops, adding a NO-OP to its log if necessary.
In either case, the replica can then proceed to execute
subsequent transactions.

As an optimization, before executing this procedure, a
replica that receives a DROP-NOTIFICATION first contacts
the other replicas in its shard. If one of them received the
missing message, it can respond with it, allowing the first
replica to process the transaction as normal. If successful, this
allows a replica to recover from a dropped message without
involving the FC. In our experience, this optimization is im-
portant, as message losses that affect all replicas in a shard
are rare.

6.4 Designated Learner Failure
Because only the DL executes transactions, and the ability to
make progress is dependent on each shard having a DL, Eris
has a view change protocol to replace the DL if it fails. To
ensure the system remains correct, the new DL must learn
about all transactions committed in previous views. It must
also learn about any TEMP-DROPPED-TXNs sent by a ma-
jority in previous views, and refrain from processing these
transactions until learning their outcome from the FC.

The view change is achieved using a protocol similar to
Viewstamped Replication [45, 51]. We provide only a brief
overview due to space constraints; the details appear in [42].

Any replica that suspects the DL to have failed stops pro-
cessing requests and sends a VIEW-CHANGE message to the
DL of the next view, including its current state. The DL of
the new view waits for such messages from a majority, then
assembles the state for the new view using the longest log it
received and the union of the temp-drops, perm-drops, and
un-drops it received, overwriting any transactions in the new
log with NO-OPs if they match txn-ids in perm-drops. If the
new log has any transactions matching txn-ids in temp-drops
without corresponding txn-ids in un-drops, the DL must wait
for the FC to come to a decision about those txn-ids, retrying—
asking the FC and sending any necessary HAS-TXNs—if nec-
essary. The DL then sends a START-VIEW message with the
new state to the other replicas, which adopt the new state and
transition to the new view.
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A view change (or epoch change) could result in the DL
from the old view having executed transactions which are
eventually dropped, potentially requiring application-level
rollback. Eris handles this possibility with application state
transfer.

6.5 Epoch Change
Eris also needs to be able to handle epoch changes in the multi-
sequencing layer, i.e., sequencer failures. As with dropped
messages, the FC manages this process. It ensures all replicas
across all shards start in the new epoch in consistent states, i.e.,
that replicas learn about transactions committed in previous
epochs and that no replica knows about a transaction which
the other participants in the transaction do not know about.

When a replica receives a NEW-EPOCH notification from
the network layer, it stops processing requests and sends the
FC an EPOCH-CHANGE-REQ message. The FC then requests
from every replica the replica’s current state (or sufficient
metadata) along with a promise not to process operations for
any lower-numbered epoch. The FC waits for such promises
from a simple majority of replicas in every shard. It then
decides the initial state for every shard in the new epoch
using only those responses from the most recent epoch the
FC started. For each shard, it takes the highest view-num it
received and a log that contains all of the transactions the
FC received which have that shard as a participant (with
transactions the FC previously dropped being replaced by
NO-OPs). It sends that state as a START-EPOCH message to
all replicas, which adopt the new view-num and log, execute
any new transactions, and clear their temp-drops, perm-drops,
and un-drops. Having reached a consistent state, they are now
able to process messages from the new sequencer. The FC
retains and retransmits these START-EPOCH messages until
a majority of replicas from each shard acknowledge the new
epoch. See [42] for the full protocol details.

6.6 Synchronization
During the normal processing of independent transactions
(Section 6.2), only the DL of each shard executes indepen-
dent transactions synchronously; other replicas simply log
transactions. In order to prevent the application states of those
replicas from becoming too out of date, Eris utilizes a synchro-
nization protocol exactly as in NOPaxos [43]. Periodically,
the DL of each shard synchronizes its log with the other repli-
cas and informs them that it is safe to execute the independent
transactions therein. Again, see [42] for the full details.

6.7 Correctness
Eris guarantees linearizable execution of independent transac-
tions and liveness during periods of stability. A full proof and

a model-checked TLA+ specification appear in [42]. Here,
we give a sketch of the main safety argument.

Definitions. Transaction t is committed at a shard in a log
slot if that shard sent a view-consistent quorum of REPLYs
for t. A drop promise for txn-id τ is committed if a view-
consistent quorum sent TEMP-DROPPED-TXNs for τ . We say
a log (consisting of transactions and NO-OPs) is stable if its
transactions are a prefix of the transactions of the logs of all
replicas in the same shard in later epochs and views.

We first consider the behavior of a single shard:

Invariant: If a transaction is committed in a log slot, then
it will be in that slot in the log of any replica in the same
shard in a later view or epoch. Similarly, if a drop promise
for a txn-id is committed, then any replica in the same shard
starting a later view in the same epoch will have the txn-id in
its temp-drops.

This guarantees that at any time, the DL of a shard has a
record of all previously committed transactions and current
drop promises. The protocol ensures this invariant by starting
a new view or epoch with the union of the states from a ma-
jority of replicas, at least one of which must have participated
in any previously committed transaction or drop promise.

Because replicas add transactions to their logs in sequential
order, once a transaction in the DL’s log is committed, any
earlier transactions in its log must also have been present
at a majority and will therefore survive into later views and
epochs. Further, no lower-numbered transactions not in its log
can survive into later views and epochs: any NO-OPs in the
log correspond to transactions dropped by the FC after a com-
mitted drop promise. Future DLs will find out about this drop
promise during view change, and the FC will not start the next
epoch with that transaction. Therefore, the DL’s log is stable,
meaning the behavior of a single shard is indistinguishable
from a single, correct node.

Next, we consider the aggregate behavior of multiple
shards. Because of the prior invariant and the fact that the
FC only drops a transaction after a drop promise from ev-
ery shard, the following invariant holds (a full proof appears
in [42]):

Invariant: If transaction t was committed by shard s, then
for all other participant shards s′: if s′ has committed t ′ ≻ t,
then s′ has committed t. Here, ≻ is the partial order assigned
by the multi-sequencing layer.

That is, transactions are executed atomically across shards
in a way that respects the multi-sequencing order. Since multi-
sequencing guarantees a partial order where any potentially
conflicting transactions are comparable, any execution re-
specting this order will be free of conflict cycles and thus
serializable. Further, that order respects the real-time ordering
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of transactions as received by successive sequencers, making
Eris’s transaction execution linearizable.

7 BUILDING GENERAL TRANSACTIONS
Many – but not all – important operations are expressible as in-
dependent transactions. One type of exception is a conditional
update that depends on data stored on another shard, e.g., a
banking transaction which moves funds from one account to
another only if there are sufficient funds. In many cases, these
operations can be avoided through careful partitioning (or
even state duplication), e.g., by placing both accounts on one
shard [21]. However, to support all workloads, we extend Eris
to support general transactions, which can have cross-shard
dependencies.

Eris runs general transactions by dividing them into multi-
ple independent transactions. General transaction execution is
thus a layer running atop independent transaction execution.
This simplifies design: the general transaction implementation
can rely on the fact that the independent transaction process-
ing layer is correct and provides linearizable execution. That
is, it can assume that a single, correct machine is processing
independent transactions sequentially.

Supporting strong isolation in the presence of these more
general transactions requires an additional concurrency con-
trol mechanism. Eris uses strict two-phase locking. Shards
maintain read and write locks for every data item, used only
when there are outstanding general transactions. While a lock
is held, any independent or general transactions that affect the
corresponding data item wait until it is released.

7.1 General Transaction Protocol
We first consider general transactions whose full read/write
sets are known a priori. These transactions are committed in
two phases. In the first phase, the client sends a preliminary
transaction, which executes the reads and acquires all read
and write locks. In the second phase, the client sends a conclu-
sory transaction, which either Commits or Aborts the general
transaction. A Commit installs the transaction’s modifications;
in both cases, the transaction’s locks are released.

Eris can also execute transactions whose read and write
sets are not known at start time, i.e., they are state dependent.
To this end, Eris employs reconnaissance queries precisely as
in Calvin [59]. That is, before sending the preliminary compo-
nent of a general transaction, the client sends single-message,
non-transactional reads to determine the full read/write sets.
The preliminary transaction checks that the values returned
by reconnaissance queries are still valid. If any have been
changed, the general transaction will be aborted. Otherwise,
the conclusory transaction can proceed as above.

7.2 Handling Client Failures
Eris clients are their own transaction managers. Because
clients can fail, Eris must be able to abort a general transac-
tion started by a failed client to allow the system to maintain
progress. In general, solving this problem is the domain of
complex cooperative termination protocols [8]. Because Eris
builds on the atomic execution of independent transactions,
however, it permits a simple solution. When an Eris replica
suspects that a client has failed because it has held locks for
too long without sending the conclusory Commit or Abort, the
replica can unilaterally abort the general transaction simply
by sending the Abort command as an independent transaction
itself, sequenced through the independent transaction layer.
This ensures all participant shards reach the same Commit/Abort
decision, even if the client concurrently attempts to send a
Commit.

7.3 Discussion
Eris builds its general transaction layer atop its core inde-
pendent transaction primitive. This modularity simplifies the
design, particularly for handling client failures. This layered
design is practical because Eris is able to commit independent
transactions in a single round trip. Such an approach would
not be practical in previous systems like Granola, where in-
dependent transactions still involve significant coordination
overhead. As a result, Granola uses separate, specialized pro-
tocols for independent and general transactions, with compli-
cated (and costly) procedures for transitioning between the
two [21].

Furthermore, Eris’s use of in-network concurrency control
prevents deadlocks, eliminating a large class of concurrency-
induced Aborts and complex deadlock detection mechanisms:
acquiring locks in a single, atomic step executed by a lineariz-
able layer means cycles in the wait-for graph are not possible.
Combined with the throughput and latency benefits of the
independent transaction processing protocol, this allows Eris
to better cope with high contention.

8 EVALUATION
We implemented the Eris protocol in approximately 7,500
lines of C++ code. Eris servers were deployed on 9 machines
with 2.5 GHz Intel Xeon E5-2680 processors and 64GB of
RAM running Ubuntu Linux 16.04. Load was generated using
client machines deployed on an additional 10 servers with
Xeon L5640 processors. All servers were interconnected us-
ing a 10 Gbps Ethernet network that emulates a three level
fat-tree topology using three Arista 7050S-64 switches. Multi-
sequencing was implemented with a middlebox prototype
using a Cavium Octeon CN6880 network processor. All ex-
periments used three replicas per shard (thereby tolerating one
replica failure), and fifteen shards (unless otherwise noted).
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We evaluated the performance of Eris against three other
transactional systems: Granola [21], TAPIR [66] (a Fast
Paxos [41]-based protocol), and a standard distributed trans-
action protocol – similar to Google’s Spanner [19] – that
uses two phase commit, two phase locking, and Multi-Paxos
(Lock-Store). As a baseline for ideal performance, we also
compared against a nontransactional, unreplicated (NT-UR)
system that provides neither consistency nor fault tolerance
guarantees. It uses a single node per shard with no coordina-
tion, replication, or concurrency control; while this system
uses fewer servers than Eris, its performance is the maximum
expected of any system with the same number of shards. All
systems were implemented in the same C++ framework as
Eris, and all transactions used stored procedures.

8.1 Microbenchmarks with YCSB+T
To examine different aspects of Eris’s performance, we ran all
systems against a series of tests using YCSB+T [24], a transac-
tional extension of the popular YCSB key-value store bench-
mark [18]. YCSB+T wraps key-value store operations inside
simple transactions such as read, insert, or read-modify-write.
To test distributed transactions across multiple shards, we
added multi-key read-modify-write transactions to YCSB+T.

We evaluated the latency, throughput (reported as commit-
ted transactions per second), and scalability of Eris using
three workloads in the YCSB+T framework. The first was the
standard single-shard read/write (SRW) workload which is-
sued single-key reads and writes in a 1:1 ratio. Next, a custom
multi-shard read-modify-write (MRMW) workload issued
both single-key reads and updates to two randomly selected
keys; these updates did not have cross-shard dependencies
and were therefore independent transactions. Lastly, we ran
a custom cross-shard read-modify-write (CRMW) workload
that issued single-key reads and transactionally swapped the
values of two random keys, requiring cross-shard updates
(and therefore general transactions).

Latency vs. Throughput. The SRW workload tests ideal
conditions for all systems: minimal contention and no dis-
tributed transactions. Figure 6 shows that Eris achieved a
maximum throughput of 1.26M transactions/second. This is a
2.5× and 4.5× increase over Granola and Lock-Store, which
incur Multi-Paxos replication overhead, and 2.9× higher than
TAPIR, which must process additional commit and finalize
messages for each transaction. Eris avoids this coordination
overhead, and so achieved throughput within 10% of the the-
oretical maximum implied by the NT-UR system. By requir-
ing only one round trip to commit independent transactions,
Eris also achieved latency within 10% of the NT-UR system:
99 µs, 48–72% lower than the other systems. The throughput
gap between Eris and the NT-UR baseline is largely due to
the small amount of protocol logic that Eris must execute for
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Figure 6: Throughput and latency of the YCSB+T SRW workload
with uniform key-access
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Figure 7: YCSB+T MRMW throughput with an increasing per-
centage of multi-shard transactions and uniform key-access

every transaction (e.g., multi-stamp parsing and manipulation,
out-of-order packets processing and buffering, etc.), while
Eris’s higher latency can be attributed to the overhead of our
middlebox multi-sequencing implementation.

Distributed Transactions. Eris outperformed other systems
by a greater margin on distributed transactional workloads.
The MRMW experiment shown in Figure 7 gradually in-
creased the percentage of multi-shard RMW independent
transactions; contention levels remain low because keys were
selected uniformly at random. Because Eris uses in-network
concurrency control for coordination-free distributed trans-
actions, it maintained throughput within 10% of the NT-UR
system. (NT-UR throughput is also lower for distributed trans-
actions as one two-shard operation is equivalent to two one-
shard operations.) For more complex, many-shard transac-
tions, see Section 8.2.

Contention. The benefits of Eris’s in-network concurrency
control are particularly relevant for high-contention work-
loads, as Eris processes independent transactions without
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Figure 8: Maximum throughput of the YCSB+T MRMW work-
load using 20% distributed transactions and Zipf key-access dis-
tribution, normalized to throughput at 0.5
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Figure 9: Throughput of the YCSB+T MRMW and CRMW work-
loads with 20% distributed transactions and Zipf key-access with
exponent 0.5. Lock-Store and TAPIR are only shown once; both
use the same coordination protocol for MRMW and CRMW and
thus have the same performance on the two workloads.

locking or aborts. Figure 8 shows this using the MRMW work-
load with 20% distributed transactions and an increasingly
skewed Zipf key-access distribution. Results are normalized,
showing how relative performance is affected by contention.
The throughput of TAPIR and Lock-Store fell significantly
at high contention rates due to frequent lock conflicts and
OCC aborts. Eris retained a throughput close to the NT-UR
system in all circumstances. Granola uses timestamps to or-
der independent transactions without locking, and thus also
avoids throughput collapse. In absolute terms, Eris outper-
formed Lock-Store by 35.0× and TAPIR by 25.6× on the
most skewed workload.

General Transactions. To consider workloads that contain
non-independent transactions, we compared the MRMW and
CRMW workloads, both using 20% distributed transactions.
Figure 9 shows that Eris suffers only a modest 28% through-
put drop when processing general transactions relative to
independent ones. Much of this difference is fundamental to
the workload: NT-UR throughput also drops for the CRMW
workload because data must be exchanged between shards.
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Figure 10: Normalized throughput of the YCSB+T CRMW (gen-
eralized transaction) workload using 20% distributed transactions
and Zipf key distribution
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Figure 11: Throughput scalability of the YCSB+T MRMW work-
load with 20% distributed transactions and 0.5 Zipf exponent

By contrast, Granola’s throughput drops by more than 50%
on the CRMW workload because it switches to a less effi-
cient locking mode. This difference becomes extreme under
high contention (Figure 10). Eris benefits from fast inde-
pendent transactions that reduce the contention window and
in-network sequencing that enables it to avoid deadlock.

Scalability. Eris scales nearly perfectly as the number of
shards increases (Figure 11). Much of this benefit is from
multi-sequencing, which establishes a consistent partial order
of messages. To demonstrate this, we also ran Eris on a glob-
ally sequenced network (Eris-OUM), one of the straw-man
designs from Section 5. This scheme scales poorly, as every
server receives every message involving any shard.

8.2 Application-Level Performance: TPC-C
For a more complex workload, we used the well-known TPC-
C benchmark, which simulates order processing [61].3 We

3Our results are not intended to be a fully conforming implementation of the
TPC-C specification, which imposes many other requirements.
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Figure 12: Maximum new-order transaction throughput with 10%
distributed transactions on TPC-C workload

used 15 warehouses, with 10% of transactions issued to multi-
ple participants. We report new-order transactions per second,
the standard metric for this workload. We adopted the data
partitioning scheme from H-Store [56] which allows express-
ing all TPC-C transactions as independent transactions. For
systems that do not support independent transactions, we en-
abled locking and undo logging. All systems store the entire
database in memory and run transactions as stored procedures.
As is common, we used closed-loop clients with no wait time.

As Figure 12 demonstrates, Eris achieved a throughput of
221K new order transactions per second. This is 7.6× and
6.38× greater throughput than Lock-Store and TAPIR respec-
tively. It is also 2.75× higher than Granola, even though both
are optimized for lock-free independent transactions, because
Eris’s protocol avoids the need for timestamp coordination
and intra-shard replication. Finally, Eris obtained throughput
within 3% of the NT-UR system, which runs TPC-C opera-
tions directly (and unsafely) on each shard without replication,
coordination, or concurrency control.

8.3 Network Resilience
The prior experiments considered a normal-case network. We
artificially injected failures to examine Eris’s resilience to
poor network conditions.

Dropped Messages. Eris relies on in-network sequencing
for its high performance, but must invoke the FC when pack-
ets are lost. In Figure 13, we randomly dropped an increasing
fraction of packets. Even at a high packet drop rate (1%),
Eris’s throughput fell only by ≈ 10%, showing that it avoids
the dramatic performance degradation seen in many specula-
tive protocols [54]. Eris replicas immediately detect dropped
messages via sequence numbers, and in most cases recover
the dropped message from other replicas in the shard, without
invoking the FC. At a packet drop rate of 10%, Eris’s through-
put degrades more and drops below Granola’s. However, our
Eris implementation is designed for normal datacenter net-
work conditions and could be further optimized to handle
higher drop rates. The other system significantly affected by
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Figure 13: Maximum throughput of the YCSB+T SRW as the sim-
ulated packet drop rate increases
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Figure 14: Throughput of the YCSB+T SRW workload during a
sequencer failover and epoch change that begins at t = 0

packet loss is TAPIR, which experiences replica state diver-
gence that forces the more expensive consensus slow path.

Sequencer Failover. When the network sequencer fails, the
network controller must reroute to a new sequencer, and all
replicas must coordinate with the FC as part of the epoch
change protocol. To evaluate this cost, we triggered a failure
in the middle of a YCSB+T SRW workload. Figure 14 shows
that Eris resumed normal operation after 130 ms and maxi-
mum throughput after 300 ms. Most of the delay is caused by
the controller re-establishing network connectivity and could
be avoided with a faster rerouting protocol [46].

9 RELATED WORK
Eris builds on prior work in co-designing distributed algo-
rithms with network primitives, and transaction processing.

Network Co-Design. A promising new direction in dis-
tributed systems research takes advantage of the increased
capabilities of datacenter network devices. Eris is inspired
by Ordered Unreliable Multicast [43]. OUM can efficiently
sequence requests in a single replica group; extending this to
transactions requires a more sophisticated sequencing mech-
anism (multi-sequencing), a more complex failure recovery
protocol, and the independent transaction concept.
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The implementation of multi-sequencing is motivated by re-
cent programmable switch architectures [6, 14, 52, 65]. These
have been used to implement a variety of ordering primitives,
ranging from the best-effort Mostly-Ordered Multicast [54]
to complete in-switch implementations of Paxos [22]. These
represent a new take on group communication primitives, a
classic distributed systems problem [10, 11].

Many systems have used centralized sequencers to imple-
ment group communication primitives [4, 34] and transaction
processing systems [9, 62]. These systems provide differ-
ent ordering and fault-tolerance semantics for the sequencer.
Eris’s sequencer design is unique in that it both sequences
transactions atomically for multiple destination groups and
supports an in-network implementation without persistent
in-switch state. vCorfu’s [62] materialized stream abstraction
is similar in spirit to Eris’s multi-sequencing. However, multi-
sequencing is implemented in-network, and vCorfu itself uses
a variant of chain replication that takes at least four round
trips to commit a transaction.

Other designs take advantage of other specialized hardware
for faster application-level processing. CORFU [4, 5] uses a
sequencer to assign an order to operations stored in a log built
on clusters of flash drives. Loosely synchronized clocks [44]
have been widely used for ordering [1, 19, 21, 27, 66].
FaRM [25, 26] and DrTM [17, 63] employ high-speed RDMA
networks, transactional memory, and non-volatile RAM to
accelerate distributed transactions. By accelerating network
processing, they are able achieve higher levels of throughput
than Eris or its baseline system. Integrating these technologies
with Eris could offer even higher performance.

Transaction Algorithms. There is a vast literature on dis-
tributed storage systems with varying levels of transaction
support; we do not attempt to detail them all here. Recent
systems have explored various points in the design space for
transactional partitioned replicated storage systems [2, 47, 67].
Most use a layered architecture with separate coordination
mechanisms for cross-shard transactions and in-shard repli-
cation. Eris combines both in a single protocol. In this sense,
it resembles TAPIR [66] and MDCC [38], which are also
unified protocols (though the latter only provides weak isola-
tion).

There is a long history of research on timestamp-ordering
concurrency control mechanisms, which ensure serializability
by either delaying or rejecting transactions that arrive out of
timestamp order [7, 8, 15, 55, 57]. Long thought to be of lim-
ited value because of the overhead of tracking read and write
timestamps for each data object [15], these techniques have
seen renewed interest in response to trends in distributed and
main-memory databases that make it more efficient to gener-
ate and store timestamps [1, 19, 64]. In particular, Google’s
Spanner processes read-only transactions using a multiversion

timestamp-ordering protocol [19]. Eris can be viewed as a
coarse-grained application of timestamp ordering, in that it
processes transactions sequentially in their multi-stamp order.

Eris’s transaction model is based on independent trans-
actions. Independent transactions were defined as part of
the H-Store [33, 36, 56] and Granola [21] projects. Granola
provided an application-level protocol for sequencing inde-
pendent transactions. Although H-Store originally proposed
optimizing for independent (or “strongly two-phase”) trans-
actions [56], the proposed protocol was never completed
and subsequent work abandoned the idea for a different de-
sign [33, 36]. Calvin [58–60] also uses a (different) restricted
transaction model, and centralized transaction sequencer, but
for a different purpose: so that concurrent transactions will
acquire locks in the same order across multi-threaded replicas.

10 CONCLUSIONS
The Eris transaction processing system achieves high per-
formance through a new division of responsibility between
three parts. An in-network concurrency control primitive,
multi-sequenced groupcast, establishes a consistent order of
message delivery across shards, but does not ensure atomic
or reliable delivery. The latter guarantees are provided by
the Eris protocol, which makes sure that transactions are pro-
cessed by all participant shards, or none at all. In combination,
these allow linearizable execution of independent transactions,
which make up a substantial part of many workloads. For
other workloads, a general transaction layer builds arbitrary
transactions out of multiple independent transactions.

The net result of this approach is that Eris can execute
independent transactions without any coordination: in the
normal case, transactions commit in a single round trip from
clients to replicas, and servers do not need to coordinate with
each other either within or across shards. For independent
transactions, Eris achieves 4.5–35× higher throughput and
72–80% lower latency than standard designs; even for general
transactions it provides a 3.6× performance improvement. In
both cases, Eris achieves strongly consistent, fault-tolerant,
transactional storage with overhead within 10% compared to
a system that provides no such guarantees.
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