
Dan Ports
Microsoft Research

The Future of Cloud Networking 
is Systems

https://drkp.net/

I am a distributed systems researcher.

This is a systems conference.

…so why am I giving a talk about networking?

Systems and networking research  
have converged
• Cloud networks rely on huge distributed systems

• Networks can offer new features for distributed systems

Exciting possibilities for research at this intersection

Hyperscale datacenters have changed the computing landscape

What does a network look like?

The modern network stack is fully abstract

Application

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application

Software?

Software?

Software?

Software?

Software?

Software?

The SDN world:Before:

But actually
sometimes
hardware
now?

Layers of virtualization in a modern cloud network

Physical fabric: a highly multi-path L3 routed network 

Network virtualization (VXLAN): isolate tenants and hide physical topology

• internal customer VNET IP → physical datacenter IP

 
Load balancers and NAT: provide external access to networked resources

• public IP address → one or more IPs on a customer’s VNET

(Partial) anatomy of a datacenter network

network fabricserver

VM

VM
Hypervisor

Sm
artN

IC

VXLAN
translation

happens here:
VNET → phys IP

internet

possibly offloaded
inbound IP →
VNET/phys IP

mapping
happens here

load balancer

Load balancers are central to cloud networks
They are the gateway to most deployed cloud services.

They process most inbound traffic to the datacenter.  
(Not just classic load balancing — other network functions like NAT and DDoS too)

They are inherently disaggregated (not tied to a single server)

…and, of course…
Load balancing strategies and algorithms have always been a  

fundamental problem in building high-performance distributed systems

…which means that…
Building a cloud-scale load balancer is both a major efficiency challenge 

and an opportunity to unlock powerful new functionality for distributed systems!

Evolution of cloud networking infrastructure
off-the-shelf solutions: small-scale, expensive 

(e.g. load balancer boxes)

cloud-scale software implementations

advanced new features increased efficiency

two conflicting pressures

Programmable hardware can help us meet both requirements!

Classic software load balancer design

see, e.g. “Ananta: Cloud-Scale Load Balancing” [Patel et al., SIGCOMM ’13]

Control plane

(decides what
action to take
with a flow)

Data plane
(servers)

executes flow
transformations

Flow
transformations

5-tuple → action
e.g.,

67.40.19.211:1024,20.83.140.166:80 ->
[encap, VNET#42, 10.0.0.1]

New programmable network hardware can help

 Smart NICs / DPUs  
 (Mellanox BlueField, AMD/Pensando Elba, Intel IPU, …) 
 ~400 Gbit/s per device

 Programmable switches  
 (Intel Tofino, Mellanox Spectrum, Cisco Silicon One, …) 
 ~10-50 Tbit/s per device, limited memory

Combinations of these devices are possible too

New programmable network hardware can help

Commonalities between architectures

• Optimized packet processing accelerator runs simple “programs” at line rate

• Flexible beyond “traditional” network processing, e.g. IP routing

• Can make dynamic, per-packet decisions

• Packets that can’t be processed in hardware can be sent to onboard CPU cores
or external systems

Smart NICs can have access to greater memory and onboard CPUs;  
programmable switches have higher packet processing rates but limited resources

Accelerated load balancing architecture

Control plane

(decides what
action to take
with a flow)

Data plane
(servers)

executes flow
transformations

Flow
transformations

Accelerator device 
(programmable HW)

caches
transformations 

for hot flows

Flow
transformations
(cache updates)

Research challenges for accelerated load balancing

How do we make it work efficiently?

• Which flows do we cache? 
Accelerator HW can handle many packets,  
but limited flow state

How do we make it work correctly?

• How do we ensure consistent states  
between accelerator and SW?

How do we make it work flexibly?

• Can we support multiple HW platforms 
with different properties 

ML-based flow classification to trigger offloads

Distributed cache consistency protocol  
for managing flow state

Platform-independent specification of  
desired packet transformation behavior

What new things can we do with a fast, flexible load balancer?

Research challenges for accelerated load balancing
Opportunities

We can build new load balancing policies  
customized for applications

We can run flexible load balancing at microsecond scale  
using new hardware accelerators 

 

We can use these to make distributed systems 
faster, more efficient, and more reliable!

Agenda for this talk

Overview of accelerated load balancing

Three systems that enable new functionality with accelerated load balancing

Pegasus: balancing skewed workloads in distributed storage

Capybara: live migration of active TCP connections at µs-scale

Beaver: using load balancers to take practical persistent checkpoints

My other job

In my spare time, I run a social network for systems researchers

(You should join! - https://discuss.systems/)

https://discuss.systems

Many workloads are skewed and dynamic

Skewed workloads lead to load imbalance

meeting latency requirements with skew
requires over-provisioning servers 

(and wasting resources!)

rack-scale
storage system

Observation: rack as a whole has spare processing capacity

A

Rack

A

A

How to route requests
to the right server?

How to ensure
consistency?

selective
replication

Our approach: Pegasus

rack-scale
storage system

programmable
top-of-rack switch

as

load balancer in-network  

coherence
directory

via

[J. Li et al, “Pegasus: Tolerating Skewed Workloads in Distributed Storage with In-Network Coherence Directories, OSDI’20]

Coherence Directory Approach

Coherence
Directory

S0

Replicated

Obj ID

Replica
Set

A

B

D

S1

S2 S1 S0

S0 S2

S1

S2

A

B

B

B

D

D

READ BWRITE A

A

S2

WRITE
REPLY

Challenges:
Where to implement the coherence directory?

How to design an efficient coherence protocol?

Coherence Directory Approach

We can put an object anywhere, as long as we keep track of where we put it

We can make as many copies as we want, as long as we keep track of where they are

We can move an object as frequently as on every put operation

In-Network Coherence Directories

• All requests and replies traverse
the ToR switch

• ToR serves as a central point
• Line-rate packet processing

• No throughput bottleneck

• Zero latency overhead

rack-scale
storage system

• All requests and replies
traverse the ToR switch

• ToR serves as a central point
• Line-rate packet processing

• No throughput bottleneck

• Zero latency overhead

Pegasus Coherence Protocol

Load balancer processes all requests

LB maintains coherence directory, 
keeping track of which replica has the latest version of each object 
(using version numbers)

Requests are forwarded based on directory + load:

• read requests: forward to least loaded replica with copy of data

• write requests: pick a new replica set from least loaded replicas 
and update directory 
then update the directory once complete

Protocol benefits:
•Guarantees linearizability
•One RTT
•Non-blocking
•No extra coherence traffic

Pegasus Balances Highly Skewed Workloads
Th

ro
ug

hp
ut

 (M
op

s/
s)

0

50

100

150

200

Uniform Zipf-0.9 Zipf-1.0 Zipf-1.2

Consistent Hashing Pegasus

10x
throughput

improvement

28-server KV store, YCSB read-only workload, 50 µs latency SLO

similar results for: 

read-heavy vs write-heavy,
small vs large objects,

dynamic popularity

Pegasus Summary

Specialized load balancer application for highly skewed workloads

Pegasus leverages the central vantage point of the network switch 
to keep track of where data is located and which servers have capacity

Enables a new, co-designed coherence protocol

Result: a system that can handle skewed workloads  
with the performance of a uniform workload

Agenda for this talk

Overview of accelerated load balancing

Three systems that enable new functionality with accelerated load balancing

Pegasus: balancing skewed workloads in distributed storage

Capybara: live migration of active TCP connections at µs-scale

Beaver: using load balancers to take practical persistent checkpoints

A challenge for load balancing: TCP

Systems like Pegasus assume the load balancer
acts on a packet level

Common for many advanced load balancing and
in-network computing apps 
e.g. SwitchKV [NSDI ’16], NetCache [SOSP’17]

Clients

Switch

…

…

…but…

Most datacenter traffic is TCP-based!

Load balancer can’t just  
redirect traffic on packet level

TCP migration to the rescue?

What if we could migrate an active TCP connection between servers?

We could apply the benefits of approaches like Pegasus  
to more real applications

TCP migration is an old idea!

• M-TCP [1997]

• TCP Migrate [2000]

Disruptive or slow migration can make things worse!

33

1 2 3 4

Retransmission
Timeout (ms-scale)

4

Migration

x Drop
?

Disruptive Migration Slow Migration

Capybara: µs-scale client-transparent TCP migration

[I. Choi et al, Capybara: Microsecond-Scale Live TCP Migration, APSys’23]

Capybara: µs-scale client-transparent TCP migration

User Space

Kernel Space

NIC

Application Kernel-bypass
Library OS

RX/TX
Queues

Kernel-bypassing OS

Match & Action
Table

Input Forwarding
Decision

Accelerated load balancer
on programmable switch

Transparently migrate a live TCP connection within single-digit 𝜇s

Migration-aware
packet forwarding

No context switch

Customized protocols

 “without disconnection or blocking”

Two-phase protocol
• Phase 1: Migration handshake to

buffer the connection
• Phase 2: Connection state transfer

[I. Choi et al, Capybara: Microsecond-Scale Live TCP Migration, APSys’23]

Naïve approach can reset the connection

S0 S1

LBOrigin (S0) Target (S1)

Export
C0-S0

C0-S1
Import

RST!

C0

LB

C0-S0 C0-S1

Origin Target

REDIRECT

RST!

REDIRECT

C0-S0

No one has
connection state

Block the connection during migration?

S0 S1

C0

LB

C0-S0 C0-S1

Origin Target

C0-S0

[Prism, NSDI’21]

Export
C0-S0

C0-S1
Import

BLOCK

OPEN &

REDIRECT

LBOrigin (S0) Target (S1)

Block the connection
(drop packets)

Capybara approach: transient packet buffering

S0 S1

C0

LB

C0-S0 C0-S1

Origin Target

C0-S0

C0-S1
Import

38

Export
C0-S0

C0-S1
Import

C0

SwitchOrigin (S0) Target (S1)

Buffer the connection

Merge

PREPARE_MIG

PREPARE_MIG_ACK &

REDIRECT

Capybara migrates TCP connections without blocking

Server-side architecture

39
Standard (Linux-based) Server

Application

NIC

User
Space

Kernel
Space

HW

TCP

NIC Driver

Server-side architecture
Implements TCP migration protocol in
Demikernel LibOS [SOSP ‘21]

TCP
• Tracking TCP receive queue length

• TCP state serialization/deserialization

TCPMig
• Manage ongoing migration instances

• Transient packet buffering

40
Capybara Server

Application

NIC

User
Space

HW

DPDK (rte_mempool & PMD)

LibOS

TCP TCPMig

41
S0 S1

Migration Directory
Client Origin Target Minimum Workload

Server Workload
S0 0

TCP TCPMigTCP TCPMig

1. Migration-aware packet forwarding

2. Server-load-aware migration

HEARTBEAT
Workload: 0

HEARTBEAT
Workload: 0

Switch architecture

42
S0 S1

Migration Directory
Client Origin Target Minimum Workload

Server Workload
S0 0

HEARTBEAT
Workload: 0

HEARTBEAT
Workload: 0

TCP TCPMigTCP TCPMig

C0 C1
Tracking server load

43
S0 S1

Migration Directory
Client Origin Target Minimum Workload

Server Workload
S0 0

TCP TCPMigTCP TCPMig

C0 C1

0 0

Workflow:
1. Establish connection
2. Initiate migration
3. Prepare migration
4. Transfer connection state

C0 C1

Connection establishment

44
S0 S1

Migration Directory
Client Origin Target Minimum Workload

Server Workload
S0 0

HEARTBEAT
Workload: 0

HEARTBEAT
Workload: 5

TCP TCPMigTCP TCPMig

C0 C1

3 2

Workflow:
1. Establish connection
2. Initiate migration
3. Prepare migration
4. Transfer connection state

C0 C1

Connection establishment

45
S0 S1

Migration Directory
Client Origin Target Minimum Workload

Server Workload
S1 0

HEARTBEAT
Workload: 0

HEARTBEAT
Workload: 5

TCP TCPMigTCP TCPMig

C0 C1

3 2

Workflow:
1. Establish connection
2. Initiate migration
3. Prepare migration
4. Transfer connection state

C0 C1

Server overload detected

46
S0 S1

Migration Directory
Client Origin Target Minimum Workload

Server Workload
S1 0

TCP TCPMigTCP TCPMig

C0 C1

17 15

Workflow:
1. Establish connection
2. Initiate migration
3. Prepare migration
4. Transfer connection state

C0 C1

Server overload detected

47
S0 S1

Migration Directory
Client Origin Target Minimum Workload

Server Workload
S1 0

TCP TCPMigTCP TCPMig

C0 C1

17 15

Workflow:
1. Establish connection
2. Initiate migration
3. Prepare migration
4. Transfer connection state

C1

Workload > 30

C0 C1

Server overload detected

48
S0 S1

Migration Directory
Client Origin Target Minimum Workload

Server Workload
S1 0

C1

PREPARE_MIG
Origin: S0
Conn: C1

PREPARE_MIG
Origin: S0
Conn: C1
Target: S1

TCP TCPMigTCP TCPMig

C0 C1

17 15

C1

Workload > 30

Workflow:
1. Establish connection
2. Initiate migration
3. Prepare migration (buffer)
4. Transfer connection state

C0 C1

Phase 1: Prepare migration

49
S0 S1

Migration Directory
Client Origin Target

TCP

Minimum Workload
Server Workload

S1 0

PREPARE_MIG_ACK
Origin: S0
Conn: C1
Target: S1

TCPMigTCP TCPMig

C0 C1

17 15

C1
C1

Workflow:
1. Establish connection
2. Initiate migration
3. Prepare migration (buffer)
4. Transfer connection state

C0 C1

Phase 1: Prepare migration

50
S0 S1

Migration Directory
Client Origin Target

C1 S0 S1

TCP

Minimum Workload
Server Workload

S1 0

PREPARE_MIG_ACK
Origin: S0
Conn: C1
Target: S1

TCPMigTCP TCPMig PREPARE_MIG_ACK
Origin: S0
Conn: C1
Target: S1

C0 C1

17 15

C1
C1

Workflow:
1. Establish connection
2. Initiate migration
3. Prepare migration (buffer)
4. Transfer connection state

C0 C1

Phase 1: Prepare migration

51
S0 S1

Migration Directory
Client Origin Target

C1 S0 S1

TCP

Minimum Workload
Server Workload

S1 0

TCPMigTCP TCPMig

Src: C1
Dst: S0

PREPARE_MIG_ACK
Origin: S0
Conn: C1
Target: S1

C0 C1

17 15

C1
C1

Workflow:
1. Establish connection
2. Initiate migration
3. Prepare migration (buffer)
4. Transfer connection state

C0 C1

Message buffering

52
S0 S1

Migration Directory
Client Origin Target

C1 S0 S1

TCP

Minimum Workload
Server Workload

S1 0

TCPMigTCP TCPMig

Src: C1
Dst: S0

Src: C1
Dst: S1

PREPARE_MIG_ACK
Origin: S0
Conn: C1
Target: S1

C0 C1

17 15

C1
C1

1

Workflow:
1. Establish connection
2. Initiate migration
3. Prepare migration (buffer)
4. Transfer connection state

C0 C1

Message buffering

53
S0 S1

Migration Directory
Client Origin Target

C1 S0 S1

TCP

Minimum Workload
Server Workload

S1 0

TCPMigTCP TCPMig PREPARE_MIG_ACK
Origin: S0
Conn: C1
Target: S1

C0 C1

17 15

C1
C1

1

Workflow:
1. Establish connection
2. Initiate migration
3. Prepare migration (buffer)
4. Transfer connection state

C0 C1

Message buffering

54

C0

S0 S1

Migration Directory
Client Origin Target

C1 S0 S1

TCP

Minimum Workload
Server Workload

S1 0

C0

C1

C1

17 15

C1

TCPMigTCP TCPMig

C1

CONN_STATE
Origin: S0
Target: S1

C1
Serialize

CONN_STATE
Origin: S0
Target: S1

C1

C1

15 1

Merge

Workflow:
1. Establish connection
2. Initiate migration
3. Prepare migration (buffer)
4. Transfer connection state

Phase 2: state transfer

55

C0

S0 S1

Migration Directory
Client Origin Target

C1 S0 S1

TCP

Minimum Workload
Server Workload

S1 0

C0

C1

17
TCPMigTCP TCPMig

C1

1516
Src: S1
Dst: C1

Src: S0
Dst: C1

Workflow:
1. Establish connection
2. Initiate migration
3. Prepare migration (buffer)
4. Transfer connection state

Rewriting response traffic

Capybara enables stable, low latency migration

56

Microbenchmark compares Prism
(Linux based) to Capybara
• 10,000 TCP migrations between two

servers

Prism (Linux-based)
• Avg: 45.94 𝜇s

• Tail latency over 600 𝜇s

Capybara
• Avg: ~ 3.90 𝜇s (12x faster)

• Stable

* Blocking

* Non-blockingCapybara makes TCP migration practical
for 𝜇s-scale data center systems

Capybara Summary

Capybara provides TCP migration with single-digit microsecond latency 
using a custom kernel-bypass networking stack and accelerated load balancer

Fast TCP migration makes load balancing practical for more applications

Not just for load balancing:  
also useful for migrations during server maintenance!

Leverages the ability of an accelerated load balancer to 
run custom forwarding logic at microsecond-scale

Agenda for this talk

Overview of accelerated load balancing

Three systems that enable new functionality with accelerated load balancing

Pegasus: balancing skewed workloads in distributed storage

Capybara: live migration of active TCP connections at µs-scale

Beaver: using load balancers to take practical persistent checkpoints

Distributed checkpointing is a classic problem

• A consistent, global view of states is helpful

• Checkpointing and failure recovery

• Network telemetry

• Deadlock detection

• Debugging of distributed software

• …

• Events (message send/receive,
computation step…) occur distributedly

• States associated with the task
spread across machines

s3

s0

s2

s1

…with a classic solution
e.g. Chandy-Lamport [TOCS’85]

Guarantee of causal consistency
For any event in the cut, if (‘happened before’), is in the cut.e e′ → e e′

2. Mark outbound messages post-snapshote2

e3

4. Collect recorded states after all nodes
entered the snapshotConsistent cut

e0

e1

n0

n1

1. Initiate snapshot out-of-band

e4

e5

3. Trigger snapshot (a ‘cut’) right before
receiving a marked message

Classic algorithms operate in an isolated universe

Consistent cut

Fundamental assumption:
The set of participants are closed under
causal propagation.

Unfortunately, today’s cloud
services are not so utopian!

‘Universe’ of nodes

n0

n1

This assumption rarely matches reality

Modular services Instrumentation
constraints

Costs and
overheads

Hidden causality
due to human

Not always realistic to assume zero interaction with the external world

Nor practical to instrument all involved processes

Revisiting classic snapshot protocols

Nodes of interest

A single external node can break the guarantee!

e′ 0

e′ 2

e′ 1

Hidden causal relationship: e′ 0 ← e′ 1 ← e′ 2

No longer consistent!

 in snapshot, yet not in snapshot!e′ 2 e′ 0
n0

n1

An external node
n′ 0

Can we capture a causally consistent snapshot
when a subset of the broader system participates?

Beaver: practical partial snapshots

In-group nodes

Out-group nodes
(Nodes without control)

(Nodes with VIPs of interest)

Arbitrary interactions

The same causal consistency abstraction
Even when the target service interact with  
external, black box services (arbitrary number, scale,
placement, or semantics) via arbitrary pattern (including
multi-hop propagation of causal dependencies)

Zero impact over existing service traffic
That is, absence of blocking or any form of delaying
operations

[L. Yu et al., Beaver: Practical Partial Snapshots for Distributed Cloud Services, OSDI’24]

How is this possible without coordinating external machines?

Build a dam like a Beaver!

Gateway Marking

66

Beaver’s gateway (GW) on a load balancer:
Gateway

0. Handle all inbound traffic to the in-group

nout
0

In-group

Out-group

nin
0

nin
1

e′ 0

e′ 2

e′ 1

2. Mark inbound packets correspondingly
Consistent!

The new cut at is before (vs the previous cut which is after), consistent!nin
1 e′ 2

1. Initiate GW to enter snapshot out-of-band

Gateway Marking

67

Formal proof in paper

Challenge:
Real LB deployments aren’t monolithic:

they have multiple gateway nodes

Holds even if treating the out-group nodes as black boxes

Sufficient to only observe the inbound messages

Challenge: Handling Multiple LBs

nout
0

In-group

Out-group

e′ 0

e′ 2

nin
0

nin
1

Gatewaysg0

g1

e′ 1

When message arrives, hasn’t
initiated the new snapshot mode to
mark it, triggering the violation

g1

Inconsistent!

 in snapshot, yet that leads to it is not, inconsistent!e′ 2 e′ 0

Inconsistent!

Problem: initiating snapshot mode isn’t atomic with multiple LBs

Optimistic Gateway Marking

Key idea: we don’t actually need snapshot initiation to be atomic, 
just to take less time than a round trip between in-group and out-group nodes

This is likely to be the case anyway!

• A round trip between initiator and LB nodes (within the DC) is much faster 
than a RT between in-group and out-group nodes (outside the DC)

Optimistic approach: try taking a snapshot and reject it 
if it takes too long to get response from all LB nodes

Correctness of Optimistic Gateway Marking

nout
0

In-group

Out-group

nin
0

nin
1

Gatewaysg0

g1

Intuition: the resulting snapshot is consistent
1. if is large enough
2. or if is ‘close’ enough

e′ 2

How often does the violation occur? Only in worst cases.

Observation:
Causally relevant messages are rare!
GW in-group out-group GW (external causal
chain)

→ → →

e′ 0

e′ 1

Time gap between
SLB initiation points

Theorem: if < , the resulting snapshot is consistent!

 Time to form an external causal chain (GW in-group out-group GW)≡ → → →

 Time gap between initiator-to-SLB one-way delays≡

Formal proof in paper

Beaver supports fast snapshots without performance impact

Beaver supports fast snapshot rates

Beaver incurs zero performance impact

Beaver summary

First protocol to extend classic consistent snapshot protocols to  
practical cloud settings

Ensures causal consistency with minimal changes and minimal overhead 
 

Key approach: integrate simple functionality to support snapshots 
into flexible, HW-accelerated load balancer

Finale

Accelerated cloud-scale load balance is important for efficiency 
and also provides opportunities for new features

Distributed systems can take advantage of these

• Moving data to transparently handle skewed workloads

• Transparently migrating active connections between servers

• Checkpointing systems without instrumenting all participants

 
Cloud infrastructure brings distributed systems and networking
together in a powerful new way!

