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I am a distributed systems researcher. 

This is a systems conference. 

…so why am I giving a talk about networking?



Systems and networking research  
have converged
• Cloud networks rely on huge distributed systems


• Networks can offer new features for distributed systems


Exciting possibilities for research at this intersection



Hyperscale datacenters have changed the computing landscape



What does a network look like?



The modern network stack is fully abstract
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Layers of virtualization in a modern cloud network

Physical fabric: a highly multi-path L3 routed network 

Network virtualization (VXLAN): isolate tenants and hide physical topology


• internal customer VNET IP → physical datacenter IP


 
Load balancers and NAT: provide external access to networked resources


• public IP address → one or more IPs on a customer’s VNET



(Partial) anatomy of a datacenter network
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Load balancers are central to cloud networks
They are the gateway to most deployed cloud services.


They process most inbound traffic to the datacenter.  
(Not just classic load balancing — other network functions like NAT and DDoS too)


They are inherently disaggregated (not tied to a single server)


…and, of course… 
Load balancing strategies and algorithms have always been a  

fundamental problem in building high-performance distributed systems

…which means that… 
Building a cloud-scale load balancer is both a major efficiency challenge 

and an opportunity to unlock powerful new functionality for distributed systems!



Evolution of cloud networking infrastructure 
off-the-shelf solutions: small-scale, expensive 

(e.g. load balancer boxes)

cloud-scale software implementations

advanced new features increased efficiency

two conflicting pressures

Programmable hardware can help us meet both requirements!



Classic software load balancer design

see, e.g. “Ananta: Cloud-Scale Load Balancing” [Patel et al., SIGCOMM ’13]
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New programmable network hardware can help

                                      Smart NICs / DPUs  
                                      (Mellanox BlueField, AMD/Pensando Elba, Intel IPU, …) 
                                      ~400 Gbit/s per device


                                      Programmable switches  
                                      (Intel Tofino, Mellanox Spectrum, Cisco Silicon One, …) 
                                       ~10-50 Tbit/s per device, limited memory


Combinations of these devices are possible too



New programmable network hardware can help

Commonalities between architectures


• Optimized packet processing accelerator runs simple “programs” at line rate


• Flexible beyond “traditional” network processing, e.g. IP routing 

• Can make dynamic, per-packet decisions 

• Packets that can’t be processed in hardware can be sent to onboard CPU cores 
or external systems


Smart NICs can have access to greater memory and onboard CPUs;  
programmable switches have higher packet processing rates but limited resources



Accelerated load balancing architecture
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Research challenges for accelerated load balancing

How do we make it work efficiently?


• Which flows do we cache? 
Accelerator HW can handle many packets,  
but limited flow state 


How do we make it work correctly?


• How do we ensure consistent states  
between accelerator and SW? 


How do we make it work flexibly?


• Can we support multiple HW platforms 
with different properties 

ML-based flow classification to trigger offloads

Distributed cache consistency protocol  
for managing flow state

Platform-independent specification of  
desired packet transformation behavior

What new things can we do with a fast, flexible load balancer?



Research challenges for accelerated load balancing
Opportunities

We can build new load balancing policies  
customized for applications


We can run flexible load balancing at microsecond scale  
using new hardware accelerators 

 

We can use these to make distributed systems 
faster, more efficient, and more reliable!



Agenda for this talk

Overview of accelerated load balancing


Three systems that enable new functionality with accelerated load balancing


Pegasus: balancing skewed workloads in distributed storage 

Capybara: live migration of active TCP connections at µs-scale


Beaver: using load balancers to take practical persistent checkpoints



My other job

In my spare time, I run a social network for systems researchers


(You should join! - https://discuss.systems/)

https://discuss.systems


Many workloads are skewed and dynamic



Skewed workloads lead to load imbalance

meeting latency requirements with skew 
requires over-provisioning servers 

(and wasting resources!)



rack-scale 
storage system



Observation: rack as a whole has spare processing capacity

A

Rack

A

A

How to route requests 
to the right server? 

How to ensure 
consistency? 



selective 
replication

Our approach: Pegasus

rack-scale 
storage system

programmable 
top-of-rack switch


as 

load balancer in-network  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[J. Li et al, “Pegasus: Tolerating Skewed Workloads in Distributed Storage with In-Network Coherence Directories, OSDI’20]



Coherence Directory Approach
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Challenges: 
Where to implement the coherence directory? 

How to design an efficient coherence protocol?



Coherence Directory Approach

We can put an object anywhere, as long as we keep track of where we put it


We can make as many copies as we want, as long as we keep track of where they are


We can move an object as frequently as on every put operation



In-Network Coherence Directories

• All requests and replies traverse 
the ToR switch 

• ToR serves as a central point 
• Line-rate packet processing 

• No throughput bottleneck 

• Zero latency overhead

rack-scale 
storage system

• All requests and replies 
traverse the ToR switch


• ToR serves as a central point 
• Line-rate packet processing 

• No throughput bottleneck

• Zero latency overhead



Pegasus Coherence Protocol

Load balancer processes all requests

LB maintains coherence directory, 
keeping track of which replica has the latest version of each object 
(using version numbers)

Requests are forwarded based on directory + load:


• read requests: forward to least loaded replica with copy of data


• write requests: pick a new replica set from least loaded replicas 
and update directory 
then update the directory once complete

Protocol benefits: 
•Guarantees linearizability 
•One RTT 
•Non-blocking 
•No extra coherence traffic



Pegasus Balances Highly Skewed Workloads
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Pegasus Summary

Specialized load balancer application for highly skewed workloads


Pegasus leverages the central vantage point of the network switch 
to keep track of where data is located and which servers have capacity


Enables a new, co-designed coherence protocol


Result: a system that can handle skewed workloads  
with the performance of a uniform workload



Agenda for this talk

Overview of accelerated load balancing


Three systems that enable new functionality with accelerated load balancing


Pegasus: balancing skewed workloads in distributed storage


Capybara: live migration of active TCP connections at µs-scale 

Beaver: using load balancers to take practical persistent checkpoints



A challenge for load balancing: TCP

Systems like Pegasus assume the load balancer 
acts on a packet level 

Common for many advanced load balancing and 
in-network computing apps 
e.g. SwitchKV [NSDI ’16], NetCache [SOSP’17]


Clients

Switch

…

…

…but…

Most datacenter traffic is TCP-based! 

Load balancer can’t just  
redirect traffic on packet level



TCP migration to the rescue?

What if we could migrate an active TCP connection between servers?


We could apply the benefits of approaches like Pegasus  
to more real applications


TCP migration is an old idea!


• M-TCP [1997]


• TCP Migrate [2000]



Disruptive or slow migration can make things worse!
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Capybara: µs-scale client-transparent TCP migration

[I. Choi et al, Capybara: Microsecond-Scale Live TCP Migration, APSys’23]



Capybara: µs-scale client-transparent TCP migration

User Space
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NIC

Application Kernel-bypass 
Library OS
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Accelerated load balancer 
on programmable switch

Transparently migrate a live TCP connection within single-digit 𝜇s

Migration-aware  
packet forwarding

No context switch

Customized protocols

    “without disconnection or blocking”

Two-phase protocol 
• Phase 1: Migration handshake to 

buffer the connection 
• Phase 2: Connection state transfer

[I. Choi et al, Capybara: Microsecond-Scale Live TCP Migration, APSys’23]



Naïve approach can reset the connection
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Block the connection during migration?
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C0

LB

C0-S0 C0-S1

Origin Target

C0-S0

[Prism, NSDI’21]
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Capybara approach: transient packet buffering
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Server-side architecture
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Server-side architecture
Implements TCP migration protocol in 
Demikernel LibOS [SOSP ‘21]


TCP 
• Tracking TCP receive queue length

• TCP state serialization/deserialization

TCPMig 
• Manage ongoing migration instances

• Transient packet buffering

40
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Capybara enables stable, low latency migration
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Microbenchmark compares Prism 
(Linux based) to Capybara 
• 10,000 TCP migrations between two 

servers


Prism (Linux-based) 
• Avg: 45.94 𝜇s

• Tail latency over 600 𝜇s


Capybara 
• Avg: ~ 3.90 𝜇s (12x faster)

• Stable

* Blocking

* Non-blockingCapybara makes TCP migration practical  
for 𝜇s-scale data center systems



Capybara Summary

Capybara provides TCP migration with single-digit microsecond latency 
using a custom kernel-bypass networking stack and accelerated load balancer


Fast TCP migration makes load balancing practical for more applications


Not just for load balancing:  
also useful for migrations during server maintenance!


Leverages the ability of an accelerated load balancer to 
run custom forwarding logic at microsecond-scale



Agenda for this talk

Overview of accelerated load balancing


Three systems that enable new functionality with accelerated load balancing


Pegasus: balancing skewed workloads in distributed storage


Capybara: live migration of active TCP connections at µs-scale


Beaver: using load balancers to take practical persistent checkpoints



Distributed checkpointing is a classic problem

• A consistent, global view of states is helpful

• Checkpointing and failure recovery

• Network telemetry

• Deadlock detection

• Debugging of distributed software

• …

• Events (message send/receive, 
computation step…) occur distributedly


• States associated with the task  
spread across machines

s3

s0

s2

s1



…with a classic solution
e.g. Chandy-Lamport [TOCS’85]

Guarantee of causal consistency
For any event  in the cut, if  (‘happened before’),  is in the cut.e e′ → e e′ 

2. Mark outbound messages post-snapshote2

e3

4. Collect recorded states after all nodes 
entered the snapshotConsistent cut

e0

e1

n0

n1

1. Initiate snapshot out-of-band

e4

e5

3. Trigger snapshot (a ‘cut’) right before 
receiving a marked message



Classic algorithms operate in an isolated universe

Consistent cut

Fundamental assumption:
The set of participants are closed under 
causal propagation.

Unfortunately, today’s cloud 
services are not so utopian!

‘Universe’ of nodes

n0

n1



This assumption rarely matches reality

Modular services Instrumentation 
constraints

Costs and 
overheads

Hidden causality 
due to human

Not always realistic to assume zero interaction with the external world

Nor practical to instrument all involved processes



Revisiting classic snapshot protocols

Nodes of interest

A single external node can break the guarantee!

e′ 0

e′ 2

e′ 1

Hidden causal relationship: e′ 0 ← e′ 1 ← e′ 2

No longer consistent!

 in snapshot, yet  not in snapshot!e′ 2 e′ 0
n0

n1

An external node
n′ 0

Can we capture a causally consistent snapshot 
when a subset of the broader system participates?



Beaver: practical partial snapshots

In-group nodes

Out-group nodes
(Nodes without control)

(Nodes with VIPs of interest)

Arbitrary interactions

The same causal consistency abstraction
Even when the target service interact with  
external, black box services (arbitrary number, scale, 
placement, or semantics) via arbitrary pattern (including 
multi-hop propagation of causal dependencies)

Zero impact over existing service traffic
That is, absence of blocking or any form of delaying 
operations

[L. Yu et al., Beaver: Practical Partial Snapshots for Distributed Cloud Services, OSDI’24]



How is this possible without coordinating external machines?

Build a dam like a Beaver!



Gateway Marking
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Beaver’s gateway (GW) on a load balancer:
Gateway

0. Handle all inbound traffic to the in-group

nout
0

In-group

Out-group

nin
0

nin
1

e′ 0

e′ 2

e′ 1

2. Mark inbound packets correspondingly
Consistent!

The new cut  at  is before  (vs the previous cut  which is after), consistent!nin
1 e′ 2

1. Initiate GW to enter snapshot out-of-band



Gateway Marking

67

Formal proof in paper

Challenge:
Real LB deployments aren’t monolithic:

they have multiple gateway nodes

Holds even if treating the out-group nodes as black boxes

Sufficient to only observe the inbound messages



Challenge: Handling Multiple LBs

nout
0

In-group

Out-group

e′ 0

e′ 2

nin
0

nin
1

Gatewaysg0

g1

e′ 1

When message arrives,  hasn’t 
initiated the new snapshot mode to 
mark it, triggering the violation

g1

Inconsistent!

 in snapshot, yet  that leads to it is not, inconsistent!e′ 2 e′ 0

Inconsistent!

Problem: initiating snapshot mode isn’t atomic with multiple LBs



Optimistic Gateway Marking

Key idea: we don’t actually need snapshot initiation to be atomic, 
just to take less time than a round trip between in-group and out-group nodes


This is likely to be the case anyway!


• A round trip between initiator and LB nodes (within the DC) is much faster 
than a RT between in-group and out-group nodes (outside the DC)


Optimistic approach: try taking a snapshot and reject it 
if it takes too long to get response from all LB nodes



Correctness of Optimistic Gateway Marking

nout
0

In-group

Out-group

nin
0

nin
1

Gatewaysg0

g1

Intuition: the resulting snapshot is consistent 
1. if  is large enough
2. or if  is ‘close’ enough

e′ 2

How often does the violation occur? Only in worst cases.

Observation: 
Causally relevant messages are rare! 
GW in-group out-group GW (external causal 
chain)

→ → →

e′ 0

e′ 1

Time gap between 
SLB initiation points

Theorem: if  < , the resulting snapshot is consistent!

   Time to form an external causal chain (GW in-group out-group GW)≡ → → →

   Time gap between initiator-to-SLB one-way delays≡

Formal proof in paper



Beaver supports fast snapshots without performance impact

Beaver supports fast snapshot rates

Beaver incurs zero performance impact



Beaver summary

First protocol to extend classic consistent snapshot protocols to  
practical cloud settings


Ensures causal consistency with minimal changes and minimal overhead 
 

Key approach: integrate simple functionality to support snapshots 
into flexible, HW-accelerated load balancer



Finale

Accelerated cloud-scale load balance is important for efficiency 
and also provides opportunities for new features 

Distributed systems can take advantage of these


• Moving data to transparently handle skewed workloads


• Transparently migrating active connections between servers


• Checkpointing systems without instrumenting all participants


 
Cloud infrastructure brings distributed systems and networking 
together in a powerful new way!


