Canopy A Controlled Emulation Environment
for Network System Experimentation

Dan Ports, Austin Clements, Jeff Arnold
MIT 6.829 Computer Networks Project Report
{dr kp, andr agon, j bar nol d}@ri t . edu

December 15, 2005

Abstract mands such as “roll back the entire system to imme-
diately before this event happened”.
Network systems are hard to debug because they are
inherently parallel and non-deterministicCanopy Tqjerance to varying conditions. Network sys-
assists with network debugging by putting the entifgs are designed to work under many conditions,
network system into eontrolled emulation environ-p + this flexibility can make understanding how a
mentconstructed from virtual machines and a sinketwork system will behave more difficult. Con-
uIate:d network. This puts all variables under the aints help designers understand how a system will
user's control and provides a coherent, omnisciegknave; conversely, flexibility tends to add complex-
viewpoint of the entire system. To aid the user in 0y anq introduce subtle problems. An ideal network
serving and manipulating the syste@anopypro- gepugger should provide the experimenter with con-
vides tools such as traffic visualization, packet M@y over the conditions of the simulation that can
nipulation, rollback and replay. lead to differing behavior. To facilitate this level
of control, when a simulation is rolled back and re-
played without changes, the simulation should ex-

1 Introduction o . o
hibit exactly the same behavior as it did during the

Two of the most important properties of network sydUst execution. _
tems — scale and nondeterminism — make con-Canopy our network system debugger, includes

structing a debugger for these systems particulaH}e following key features derived from the proper-
difficult. These same properties also suggest howi@s discussed above:

network system debugger should be designed. 1. The ability to scale the system to utilize avail-

able hardware resources
Scale. Traditional debuggers operate on a singlez The ability to roll the simulation back to any
process running on a single node. An ideal net- previous time
work system debugger should provide a coheren§ The ability to replay the simulation from any
vantage point over an entire network and be capa- pointwith only specified changes
ble of efficiently observing and controlling an ar-
bitrary number of nodes simultaneously. Addition- Building a scalable system that provides fea-
ally, single-node commands such as “step this mtare (1) requires being able to take advantage of
chine forward one instruction” are no longer meamany physical machines. In a user-configured sce-
ingful when many nodes are involved, so a networlario involvingn virtual computersCanopycan dis-
system debugger should support system-wide cotmibute the computational work across uprighys-

ical machines. Inter-node communication and syten 2 discusses related work. Section 3 presents ba-
chronization uses a master/slave system, as will $ie information about usin@€anopy including the
discussed in detail in Section 4. Canopyinterface (Section 3.1) and tl@anopynet-

Nondeterminism is a significant concern for feavork model (Section 3.2). Section 4.1 provides de-
tures (2) and (3). If any of the individual nodefgils about howCanopyemulates individual nodes.
behaves differently in any capacity during a replag€ction 4.2 describes a simple versioCahopythat
then the outcome of the replay could change for reachieves all desired network debugger functionality
sons unrelated to the modifications of the expeBXCept scalability. Section 4.3 deals with extending
menter. Such changes can easily arise because ce@20pyso that it provides good scaling behavior.
puters generally exhibit at least slightly different beSections 5 and 6 suggest future work and conclude.
havior between different runs — for example, be-
cause the o_perating_ system’s random nur_nb_er gener- Ralated Work
ator seeds itself using hardware event timings that
vary across executions or because context switcheg Network Simulatorsand Emulators
occur at slightly different times. These unintended
variations between executions can confuse the expEfe nNs2 network simulator [15] is commonly used

imenter by adding confounding variables to a repldgr evaluating network protocols because it supports
in which only a specified set of variables are sug-vast number of network elements and traffic mod-

posed to change. els. Typically it is used for packet-level simulation,
Thus, to effectively experiment with and dei_n which packets are generated by synthetic sources.

bug network systems, we need to reign-in noflowever, it also includes emulation extensions [6]

determinism and form an omniscient, controIIeWhICh make it possible to “tap” live networks, in-

viewpoint of the entire network system. This SilI_roducing their packets into the simulated network,

uation calls for a new type of debugger that is ngpd to_ inject packets _from the S|mula_1ted netwo_rk
only aware of network behavior, but that controls tho '3_‘ live network. This sort of emulation _makes it
“real-world” events in order to ensure perfectly rdoractical to test real systems under esoteric network
peatable execution. Building such a debugger nEﬁ‘pOIOQ'es’ but does not provide th_e corresponding
urally requires some mechanism for putting the e‘;]a_vel. of contr.ol oye.r sourcg behavior th@anopy
tire network system into a closed environment tha 0_/|de_s_ by virtualizing not just the network but also
both controlled and observable. To create this clost(g(ﬁE individual nodes.

environment,Canopyvirtualizes theentire network Emu_lab [18] overcome_s the lack Of_ realism in net-
system work simulators by configuring physical computers

and network switches to deploy the desired network

The non-determinism of an individual node dqbpology on actual hardware. Emulab is fairly real-

rives entirely from its coupling with the “real World_ istic because it runs real code on a physical topology

- specifically, this interaction includes the PreCI3Hstead of simulation code on a simulated topology.
timing and content of asynchronous hardware eveﬁgwever this realism comes at the cost of control

Zufh as (.:IOCk :cnterrupts alllnd |tr\1,5utkeventts. Tfhﬁ N%%d reproducibility because the experiment is essen-
eterminism ot an overall network system 1o OWﬁally running “in the wild”, albeit a wild tailored to

from the non-determinism of its individual nodes he experiment configuration
as well as from events that occur in the network faE)— ’
ric. Thus, to reign-in non-determinism, we strictlyé

control the passage @frtual timeacross the system, 2 Replay

as well as the timing and content of “external inputReplaying an execution history has been used as a
atindividual nodes, such as network packets. ool for debugging both distributed and single-node
The rest of this paper is organized as follows. Sesystems. Nondeterminism is a common concern not

2

only in distributed, networked systems of the typehich threads acquire locks, which makes it possible
Canopytargets, but also in single-node multiprocese replay an execution history provided that all inter-
sor systems, in multithreaded single-CPU systemstion between threads occurs using shared memory
(since the order in which tasks are scheduled can affid is correctly synchronized with locks.
fect the outcome), or even in sequential single-CPUTai et al. [16] considered the challenges inherent
programs if they access external state. Becausdrofiebugging a parallel (but single-node) Ada sys-
this nondeterminism, replay is a useful tool in deem. They address the nondeterminism introduced
bugging these systems. by concurrent execution by adding synchronization
sequences that allow an execution history to be de-

221 Replay of single-node sequential programs terministically replayed during debugging.

Though it is especially useful in networked or paraklzl3 Replay of distributed/networked systems
lel systems where execution is highly nondeterminis-

tic, replay is useful even in sequential execution eBugnet [3, 19, 20] supports the debugging of dis-
vironments with little or no nondeterminism: it carributed systems via replay, using an approach quite
be used simply as a tool for visualizing the executismilar to Canopys. Replay is achieved by log-
of a program. The EXDAMS debugger [1], datin@ing inter-process messages and performing periodic
from the late 1960s, recorded the history of progra@hobal checkpoints. The architecture is also simi-
execution, and allowed a user to walk through thar to Canopy execution is distributed across mul-
log to inspect the execution and debug the systeiiple nodes using a Global Control Module analo-
However, since it is not actually replaying executiogous toCanopys master daemon and a Local Con-
merely browsing a pre-generated trace, it cannot rdilel Module analogous t€anopys slave daemons.
back and make changes; it is simply a visualizatid#nlike Canopy it runs processes directly with trap-
tool. ping of system calls rather than in full emulation;

One of the earliest systems to apply rollback aris is less computationally intensive but does not
replay to debugging was the IGOR debugger for tiovide the same level of control. For example, it
DUNE distributed operating system [7]. IGOR use&ould not be possible to test changes to the kernel
periodic incremental snapshots of a process’s mesgheduler or network drivers. Unlikéanopy it also
ory image to rollback a process to a previous sta@®es not appear to perform any network emulation,
It was designed for debugging sequential, singlgerely passing messages directly. This means it is
process programs, and does not support parallelnet possible to test systems in the face of complex,
distributed systems. non-deterministic network behavior such as packet
delays, loss, and reordering.

Thane and Hannson [17] devised a scheme for de-
bugging real-time distributed systems using a mod-
Recap [14] was one of the first systems to appifyfed kernel to provide replay. Their system logs
this replay approach tparallel systems. To achieveevents such as context switches and data such as net-
deterministic replay, it logs of system call resultsyork messages and system call results in order to
signals, and other asynchronous events (all exterpedvide a history to replay. The most interesting idea
sources of nondeterminism) and periodically checis-their notion of time synchronization, where time is
points the system’s state by forking and suspendiggantized into units of tim&l and synchronized be-
each process. Though it was designed for debuggimgeen every node with a specified precisibr: II.
parallel systems, it only allows rolling back of a sinwith this, it becomes possible to decrease the amount
gle process, not the entire system state. of information that must be logged to enable rollback

Instant Replay [13] also uses replay for debuggirig a specific point: the global time orderings make it
parallel programs. This system records the orderpossible to rollback to an earlier point and determin-

2.2.2 Replay of single-node parallel programs

3

istically replay to the target pointCanopyuses this desired.Canopyalso allows network traffic to be vi-
approach of deterministically replaying from availsualized in timing diagrams. Figure 1 shows a timing
able checkpoints when necessary, altho@gmopy diagram for a simple experiment with three nodes, in
does not need to log context switches or other infasthich one node sends ICMP pings to another node,
mation directly related to playback because of howith a network latency of 1.3 seconds. Each of the
Canopy achieves deterministic replay at the hardhree black horizontal lines within a group repre-
ware level. sents a node, and virtual time progresses from left to
The work most similar to ours is PDB [9, 10]right, top to bottom. Each packet is represented by
PDB makes it easier to debug distributed systerasolored line between nodes; the color indicates the
by running the entire system in a virtualization layetype of the packet. This method of visualization pro-
It uses Xen [4] virtualization for each of the nodesjides a high-level overview of network traffic. For
we considered using this approach, which woutdore detailed inspection, it is possible to obtain a
give higher performance, i@anopy but decided to PCAP-format dump of packet contents on a given
use Qemu instead for ease of implementation. Likede. This data can then be viewed with a standard
Canopy PDB allows simulating bandwidth limita-tool such as Ethereal [5], parsing the packet contents
tions, latency, and packet loss on network links. PDid giving essentially the view of a packet sniffer at-
also includes a more comprehensive GDB [8]-likéiched to that virtual node.
debugger for examining the state of processes run-
ning within each individual node in the system. We 155

considered implementing a similar debugger, but rel-
egated this part of the system to future work because // // TSROSO
of time constraints. Our principal improvement over W///////

PDB is our scheme for distributing the execution 25 o
over multiple physical hosts; PDB is designed to run
under a single host.

AR OO ORER D

3 Using Canopy 35s

3.1 Interface

// rd e v v v 7 7 7T
Canopyis controlled through a Python interface — //////////

it can be fully manipulated using the Python inter- Hll ARP IP/ICMP/Ping
preter shell. Both user-friendly and programmatic gy |p/ICMP/Pong

commands are available, which means that the full

expressive power of Python is available when spec-

ifying configurations or debugger operations. In the Figure 1: Ping trace
future, a graphical interface may be added.

The interface allows emulation progress to be con-A Canopyexperiment is set up by specifying the
trolled: the user can start or suspend execution, stamfiguration for each of the virtual nodes in the sys-
the system forward by a specified amount of virtuggm. This generally consists of the MAC address/IP
time, or roll the system back to a previous state. dtddress of each virtual node in the system, and an
also allows the user to view the network state via vd60O image for it to boot. For convenience, we pro-
ious mechanisms. The most basic such mechanismide a base disk image which contains a minimalistic
a simple list of packets currently in transit. The us@&ebian installation with a kernel configured to run
can use this list to select packets to drop or delayiagQemu. Users o€anopyhave several options for

4

creating a customized software environment: a uddeally it would be possible to use a more detailed
may create their own disk image from scratch, modiodel that would, for example, take into account the
ify the provided disk image, or simply create an IS@etwork links and queuing behavior of intermediate
image to be mounted in the emulated CD-ROM driveuters on the network. We considered using a more
of each virtual machine. The provided base disk imemprehensive network simulator such as ns2 to pro-
age automatically configures the network and rumile this functionality; unfortunately, it remains un-
an initialization script contained on the 1ISO imagelear how to implement such an emulator in a dis-
attached to the machine, if one exists. These optidributed, scalable manner.
make setting up small experiments easy without re-The network model provides default behavior
stricting the user’s ability to create a completely custhose parameters can be adjusted by the user. In
tomized software environment when necessary. addition,Canopyalways allows the operator to inter-
vene, manually dropping or delaying particular pack-

32 Network Model ets.

In order to effectively experiment with and debug.3 UseCases
networked systemsCan o_pyneeds t_o provide con network system debugger witbanopys function-
trol over the characteristics of the links that connec . o

. . . ality can be useful in many situations. We present
virtual nodes. Canopys network model consists of :

. . spme example scenarios whé&anopywould prove
send and receive capacity bottlenecks at each node .
: - -uséful for debugging.

fully connected by point-to-point links, as shown in

Figure 2. The send and receive bottlenecks are im- level itdiddle has desianed
plemented as drop-tail queues with a specified quéu@/"' evel ystems Ben Bitdiddle has designed a

size and output rate; these bottlenecks model baH&WL_Cong?St'?n contrql algorlthmr,] a”‘?' war:cts to t?St
width limitations at each node. The links betweerﬁIS inux imp ementatlonktofse:aj ow_lhp:;;forms in
pairs of nodes have configurable latencies and packdEterogeneous network of nodes with different op-

loss; these characteristics approximate the aggrege%%tm?]_sy_sterrs, link IQSS r_atz:s, and Ia_ttenc||es. dHe de-
behavior of links in the rest of the system. ploys his implementation in @anopyvirtual node,

using standard 1SO images for the rest of the nodes.
Using the timing diagram visualizer, he can see how
the system evolves over time. He notices a particular
sequence of packet losses triggers a corner case in the
implementation, and wonders how it would be differ-
ent if another packet is dropped. By rolling back the
system state, dropping a packet, and replaying, he
can see how the implementation behaves differently.
Here, Canopyis particularly useful for under-
standing network protocol implementation details
since Canopy performs full system virtualization us-
ing the same code as production systems. Network
simulators such as ns2 can exhibit different behav-
Figure 2:Canopys network model. ior from real-world systems because they simulate a
protocol rather than executing real code in a virtual
We selected this network model because it cagavironment.Canopys abilities to manipulate indi-
tures many of the critical network properties fovidual packets are useful for this low-level applica-
wide-area distributed systems, and the network etion for which the details of which packets are lost or
ulation can be implemented in a distributed manneeordered is critical.

5

High-level systems Moving on from his conges-it is intended for interactive use, and, as a result, vi-
tion control algorithm, Ben decides to build a peeolatesCanopys requirements.

to-peer file sharing system. He implements an in-|n 3 typical emulatoryirtual time— the wall clock
dexing system atop the Chord DHT, and would likgithin the guest — progresses at the same rate that
to test its fault-tolerance. To perform this test, he crghysical time progresses on the host. While this
ates a disk image containing his software, and rungbkes sense for typical, interactive use, it would
on multiple Canopyvirtual nodes. UsingCanopys make precisely synchronizing multiple virtual ma-
PCAP dumps and Ethereal, he monitors RPCs bgnines potentially running on multiple hosts diffi-
tween the nodes, and us€anopyto fail individual cylt and complicate control of the timing of hardware
nodes at various important steps in the test query e¥@ents such as packet deliveries. Furthermore, such
cution, verifying that his system correctly detects thg, approach makes the emulated system dependent
failure and responds appropriately. on conditions at the host, which is undesirable for a
In high-level systems such as this one, understargstem such a€anopyin which the debug environ-
ing individual packet timings and losses is not ement is supposed to be completely controlled.
pecially useful because a higher layer su.c.h as TCPry solve this problemCanopycompletely decou-
masks these effects. Henc€anopys ability ©0 o5 the passage of virtual time and physical time.

manipulate individual packets is no longer critica'he passage of virtual time is made proportional to

higher-level functions such as failing nodes are MAEE number of guest instructionicks) executed by

useful. The ability to decode the contents of pachie virtual CPU, approximating how time would pass

ets is esser_nial to ynderstand how the nodes in fhe physical computer. This and a user-specified
system are interacting. “ticks per virtual second” value that controls the
speed of the virtual CPU are enough to fully spec-
. ify the passage of time in the guest, independent of
4 Design passage of time at the host.
41 Node Emulation Canopyaugments Qemu’s dynamic translator to
insert the appropriate host instructions between each
At the individual node level Canopy must differ translated guest instruction to increment the virtual
from a typical emulator in a number of respectick counter and check a tick counter breakpoint.
First, in order to synchronize with other virtual macanopyacts as a discrete event simulator, execut-
chines and properly schedule events such as padkgttranslated guest code until the precise tick of the
deliveries, Canopymust precisely control the pashext scheduled event is reached. When the guest is
sage of time in the virtual machine. Second, in oidle (ie, when it is executing the HLT instruction),
der to support deterministic emulation of a whol€anopyimmediately skips virtual time forward to
network systemCanopymust, of course, supportthe next pending event so the host CPU is fully uti-
deterministic emulation at individual nodes. Thirdized. Virtual time can progress hundreds of times
Canopymust have an efficient mechanism for rollinfaster than real time when the guest is idle. Because
back individual nodes to any point in the past. the timings of events are accurate to the ticlnopy
To reuse existing workCanopys node emulator exhibits complete and deterministic control over the
is built atop Qemu 0.7.2, an efficient, open-soursgrtual clock.

PC emulator based on a dynamic binary translator.To supportdeterministic emulationCanopymust
While Qemu provides emulation of the PC hardwargot be affected by sources of non-determinism in
its own execution environmentCanopys emulator

1 . .) . . .
Indeed, while developinganopys distributed emulation ¢ assentially, three potential sources of such non-
mechanisms, it would have been extremely useful to have

Canopyavailable to debug the distributed system. Unforufl€terminism: timing with respect to physical time,
nately, circularity prevented this prospect from beindizea. user input, and network events. In tB&anopyvir-

tual machine, all notions of time are based strictly aired time then playing forward to precisely the de-
the virtual clock instead of the host clock, so detesired point in time.

ministic timing derives naturally from the determin-

istic clock. User input typically comes in the formy 2 | ocal Network Emulation

of keyboard and mouse events. By simply using au-

tomation and restricting the user's ability to interade first describe how to emulate a networked system
directly with the emulator, input non-determinism i€n @ single physical machine, neglecting scalability
easily managed. Finally, events on the emulated n§gues. This requires emulating every virtual node as
Work interface (SUCh as a packet arriving from tH@e” as the netWOI’k between them Vil‘tual nOdeS are
Ethernet) are also scheduled from the guest clock,gfBulated using the Qemu-based single-node emula-
this source of non-determinism is eliminated, givent@ described aboveCanopyruns one for each vir-

deterministic algorithm for scheduling packet deliual node. In addition, there is controller process
eries. for synchronizing the virtual nodes, emulating the

inallv. in ord b h network characteristics, and exchanging packets be-
Finally, in order to supportollback, Canopyhas tween virtual nodes. For reasons that will become

an efficient me_char_nsm for saylng and res_,tonng ”&?ear in Section 4.3, we will refer to this controller
state of the entire virtual machin€anopybuilds on grocess as thelave daeman
|-

Qemu’s existing sn_aps_hot system_. While Qemu The slave daemon communicates with the node
ways saves the entire virtual machine state (a ProCERS 1ator via a simple control protocol calladt | ,

that cf?_n_ takle secondsﬁ;anopysl SnapsPﬁ;;ysmmwhich allows the slave daemon to start and stop exe-
can efficiently save incremental snaps NOPY cution and set breakpoints. In addition, each virtual

maintains a set of dirty bits for the virtual maChinﬂode emulator has a virtual NE2000 Ethernet device

RAM (both addressable RAM and mlscellaneo%ﬁatthe slave daemoncan indirectly manipulate using

RAM managed by virtual PCI cards), which aII0"¥<ct | . For example, when the slave daemonwants to

it to very efficiently record just the differences Sincﬁave a packet appear on the virtual machine’s net-

the previous snapshot. The constant overhead Ofv%}k interface, it can ask the emulator for this event

incremental snapshot is under 4K, and each mOdiﬁ@doccur viaxct |

page adds another 4K. To further improve efficiency, Canopymaintains a constant defined to be the

these snapshots are passgd via shared memory ﬁ‘ﬁrﬂmum latency over all virtual network links, and
separatealbumprocegs, which manages the_ ,Stora%‘?\/ides virtual time intoquantaof length 6. The

of Snaﬁ shgts, mclg_dliilg zriﬁyn%hronously writing tIp@(ecution of all virtual nodes is kept synchronized
snapshot data to disk while the Qemu process Ly yat their virtual time is always within the same

ceeds with emulation. guantum. This means that it is possible to exchange
Canopyperforms an incremental snapshot of thaformation between virtual nodes only at the end of
virtual machine every two seconds by default. T@ach quantum: it is not possible for a packet to reach
benchmark our snapshot system, we booted Linuxiis destination during the same quantum in which it
the virtual machine, a process which rapidly changess sent, so each virtual node can be simulated in-
large portions of the machine’s memory and is nevéependently for one quantum without having to stop
idle. With a snapshot rate of two seconds, each snap-check whether any other node sent a packet that
shot during Linux startup requires less than 20 milkould affect it.
liseconds of processor time to capture on modernNetwork emulation proceeds as follows. The slave
hardware. Each snapshot requires about 3 megabyl@smon maintains a schedule of packets to be deliv-
of disk due to the significant changes in memory oered at each virtual node. The slave daemon instructs
curring at system startup. BecauSanopysupports the emulator for each virtual node to proceed until
deterministic emulation, it can roll back to any poirthe next packet is scheduled to be delivered — at
in time by simply restoring some point before the devhich point it will be injected into the virtual Eth-

7

ernet interface — or until the current quantum ends.
If a virtual node sends a packet, the slave daemon ap-
plies the network model described in Section 3.2 to
determine when the packet should be delivered (or if
it should be dropped), and adds it to the packet de-
livery schedule as appropriate. Barrier synchroniza-
tion is used to ensure that all virtual nodes are always |:
executing the same time quantum: the slave daemon
does not allow any virtual node to proceed to the next
time quantum until every virtual node has completed Slave physical node Slave physical node
emulating the previous time quantum.

This technique allows a networked system to

tfdgure 3: The overall architecture Gfanopy Phys-

emulated faithfully by emulating each virtual nogisal nodes are enclosed in solid boxes. Virtual ners
and the network that connects them. Global roft€ enclosed in dashed boxes. Network connections
back can be achieved by locally rolling back the sta@&® Shown in bold.

of every node using the procedure described in Sec-

tion 4.1, as well as rolling back the state of the packetation, such as the necessary 1SO images and MAC
delivery schedule. Rollback is deterministic becauaddresses, to the slave daemons.

packets are can be delivered precisely, with nanosecExecution proceeds in the same manner as the
ond accuracy. However, with only a single physicabn-distributed case: the emulation of virtual nodes

node, this scheme does not scale well to many virtugkynchronized to the same quantum, even for nodes

nodes. on different physical nodes. When virtual nodes send
network packets, the packets are exchanged directly
4.3 Distribution between the slave daemons; in addition, they are re-

ported to the master daemon so the user can moni-

The_ architecture described above ac_commodates &P hetwork traffic and for synchronization purposes.
ulation of a networked system, but it does not scalgyrier synchronization is performed on each slave
well. Emulating each virtual node is quite CPUgaemon to ensure the virtual nodes are executing the
intensive, so it is infeasible to emulate an entire digzme virtual time guantum; now, however, the slave
tributed system on a single physical node at a regsemon reports to the master daemon when all of its
sonable rate of execution. Hence, we distribute thgi,al nodes have reached the barrier, and the mas-
emulation over multiple physical nodes. ter daemon does not allow the slave daemons to pro-
Canopyruns atop one or more networked physgeeq until each slave daemon (and heeceryvir-
cal machines, as depicted in Figure 3. One of thgg| node) has reached the barrier. In addition, the
machines is designated as taster physical node master daemon transmits to each slave daemon the
and the rest of the machines atave physical nodes nymper of packets it should receive from other slave
The slave physical nodes run slave daemons, ess@fksmons, to ensure that no slave daemon begins ex-

tially as in the non-distributed architecture of Se%‘cuting the next quantum before it has received all
tion 4.2, except that they are now overseen by a M@Sickets from the previous quantum.
ter daemon on the master physical node, which en-

sures that the slave daemons are synchronized.

When aCanopy experiment begins, the masteb Future Work
daemon distributes the virtual nodes that need to be
created, assigning zero or more virtual nodes to edextended network emulation. Canopy support
slave daemon, depending on the number of physiéal an ns2-like network simulator would be useful
nodes available. It then transmits configuration infoier situations in which highly realistic network be-

8

havior is essential. Unfortunately, using ns2 itsalfative execution may be useful.
with Canopywould severely limit the scalability of

the system because ns2’s design essentially requji@$ a-node debugging. Canopy is intended for
that all packets be delivered through some Ce”tfﬁilistically debugging networked systems, providing
node running the simulation. This conflict suggesgperations that affect the entire state of the system.
the need for alistributed network simulator. Unfor- However, it would be useful to be able to examine
tunately, creating a “distributed ns2” is beyond th@e internal state of each node in order to understand
scope of this work. what is happening. For example, it would be useful
to run a GDB-like debuggensideeach node. How-
Barrier-free synchronization. The barrier Ve i is_not stra@ghtfc_)rwgrd 0 ?‘pp'y a stan_dard de-
synchronization algorithm described in Se ugger d|rec_tly, since it will !ose _|ts state during roll-
ck; what is actually required is a debugger aware

tions 4.2 and 4.3 guarantees that no packet | q ble of steoning f 4 and back
ever arrive at a virtual node’s emulator after th%grredpir?)':ir?wr; capabie of stepping forward and back-

emulator has already simulated beyond the packevf‘
arrival time. However, it introduces a performance
overhead since emulators must periodically reman Conclusion
idle waiting for other emulators to reach the current
barrier. By relaxing the virtual time synchronizatiomNetwork system debugging presents unique chal-
requirement, we can improve performance by elirftenges because of the scale and adaptability of net-
inating barrier synchronization. We briefly sketcvork systemsCanopysolves some of the problems
an algorithm, which we have yet to implementglated to network system debugging by providing
for ensuring correct emulation using speculatistalable centralized control, rollback, and determin-
execution [11] and rollback instead of barriestic replay. A user ofCanopycan leverage the sys-
synchronization. tem to examine almost any piece of real-world net-

Rather than trying to avoid the case where a packetrk software sinc&Canopyperforms full machine
arrives at a virtual node emulator too late, we can iamulation and does not require special software cus-
stead accommodate this case after it occurs. If thignizations. WithCanopy the entire network is
situation occurs, we can roll back the virtual nodefdaced under the control of the experimenter, making
execution to the time before the packet was schadpossible to experiment with network parameters
uled to arrive, deliver it, and resume execution. Witnd observe the system’s resulting behav@anopy
this procedure, we can eliminate the barrier synchmmakes it possible to debug a networked system as a
nization, and indeed even the notion of quantizehole, unlike traditional debuggers which only pro-
time becomes necessary. The master daemon is ondle limited control over part of the system.
necessary to report packets to the user and allow con-
tol. o _ References

This barrier-free synchronization algorithm can
provide greater performance. Barrier synchronizafl] R. M. Balzer. EXDAMS: Extensible debugging and
tion constantly assumes the worst-case for packet de- monitoring system. IiProc. ACM Spring Joint Com-
livery: that every packet will be delivered with the puter Conferencepages 567-580, 1969.
minimum latency possible. This leads to frequent?] W. H. Cheung, J. P. Black, and E. Manning. A
synchronizations and unnecessary blocking; rollback ramework for distributed debuggindEEE Trans-

. - actions on Computer§(1):106-115, Jan. 1990.
will be more (_afflc_lent unless the number of out-of- 3] R. Curtis and L. Wittie. Bugnet: A debugging
order arrivals is high enough that the cost of rollback * gystem for parallel programming environments. In
exceeds the cost of synchronization. In these cases, a Proc. IEEE International Conference on Distributed
coarse-grained synchronization combined with spec- Computer Systempages 394-399, Oct. 1982.

9

[4]

[5]
[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
I. Pratt, A. Warfield, P. Barham, and R. Neugebauer.

Xen and the art of virtualization. IRroc. 19th ACM [17]
Symposium on Operating System Principles (SOSP

'03), Bolton Landing, New York, Oct. 2003.
Ethereal: A network protocol analyzer. Available
fromhtt p: //ww. et hereal . cont .

K. Fall.
ulator. InProc. IEEE Symposium on Computers
and Communications (ISCC '99%harm EIl Sheikh,
Egypt, July 1999.

S. I. Feldman and C. B. Brown. IGOR: a system
for program debugging via reversible execution. In
Proc. 1988 ACM SIGPLAN and SIGOPS Workshop

on Parallel and Distributed Debuggingolume 24 [19]

of ACM SIGPLAN Noticepages 112 — 123, Madi-
son, Wisconsin, 1988.
J. Gilmore and S. Shebs.GDB Internals Free

Software Foundation, Boston, MA, second editiofi20]

2003.

T. L. Harris. Dependable computing needs pervasive
debugging. IrProc. 2002 ACM SIGOPS European
Workshop Saint-Emilion, France, Sept. 2002.

A. Ho, S. Hand, and T. Harris. PDB: Pervasive de-
bugging with Xen. InProc. Fifth ACM/IEEE Inter-
national Workshop on Grid Computing (GRID 'Q4)
2004.

D. Jefferson, B. Beckman, F. Wieland, L. Blume,
M. DiLoretto, P. Hontalas, P. Laroche, K. Sturdi-
vant, J. Tupman, V. Warren, J. Wedel, H. Younger,
and S. Bellenot. Distributed simulation and the Time
Warp operating system. Broc. 11th ACM Sympo-
sium on Operating System Principles (SOSP ,87)
pages 77-93, Austin, TX, 1987.

M. Kim. On distributed and parallel debugging:
Nondeterminism and deterministic replay. Techni-
cal report, University of Washington, 2002.

T. J. LeBlanc and J. M. Mellor-Crummey. Debug-
ging parallel programs with instant replayEEE
Transactions on Computers86(4):471-482, Apr.
1987.

D. Z. Pan and M. A. Linton. Supporting reverse
execution for parallel programs. |Rroc. 1988
ACM SIGPLAN and SIGOPS workshop on paral-
lel and distributed debuggingrolume 24 ofACM
SIGPLAN Noticespages 124-129, Madison, Wis-
consin, 1988.

The ns2 network simulator. Software available at
http://ww. i si.edu/ nsnanm ns/.

K.-C. Tai, R. H. Carver, and E. E. Obaid. Debug-
ging concurrent Ada programs by deterministic re-

10

Network emulation in the Vint/NS sim-[18]

play. IEEE Transactions on Software Engineering
17(1):45-63, Jan. 1991.

H. Thane and H. Hansson. Using deterministic re-
play for debugging of distributed real-time systems.
In Proc. 12th EUROMICRO Conference on real-
time systemspages 265-272, Stockholm, Sweden,
June 2000.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environ-
ment for distributed systems and networksPhoc.
Fifth Symposium on Operating Systems Design and
Implementation (OSDI '02)pages 255-270, Dec.
2002.

L. Wittie. The Bugnet distributed debugging system.
In Proc. 2nd ACM/SIGOPS European Workshop on
Making Distributed Systems Wokages 1-3, Ams-
terdam, Netherlands, 1986.

L. D. Wittie. Debugging distributed C programs
by real time replay. IrProc. 1988 ACM SIGPLAN
and SIGOPS Workshop on Parallel and Distributed
Debugging volume 24 ofACM SIGPLAN Notices
pages 57-67, Madison, Wisconsin, 1988.

