
Canopy: A Controlled Emulation Environment
for Network System Experimentation

Dan Ports, Austin Clements, Jeff Arnold
MIT 6.829 Computer Networks Project Report
{drkp,amdragon,jbarnold}@mit.edu

December 15, 2005

Abstract

Network systems are hard to debug because they are
inherently parallel and non-deterministic.Canopy
assists with network debugging by putting the entire
network system into acontrolled emulation environ-
mentconstructed from virtual machines and a sim-
ulated network. This puts all variables under the
user’s control and provides a coherent, omniscient
viewpoint of the entire system. To aid the user in ob-
serving and manipulating the system,Canopypro-
vides tools such as traffic visualization, packet ma-
nipulation, rollback and replay.

1 Introduction

Two of the most important properties of network sys-
tems — scale and nondeterminism — make con-
structing a debugger for these systems particularly
difficult. These same properties also suggest how a
network system debugger should be designed.

Scale. Traditional debuggers operate on a single
process running on a single node. An ideal net-
work system debugger should provide a coherent
vantage point over an entire network and be capa-
ble of efficiently observing and controlling an ar-
bitrary number of nodes simultaneously. Addition-
ally, single-node commands such as “step this ma-
chine forward one instruction” are no longer mean-
ingful when many nodes are involved, so a network
system debugger should support system-wide com-

mands such as “roll back the entire system to imme-
diately before this event happened”.

Tolerance to varying conditions. Network sys-
tems are designed to work under many conditions,
but this flexibility can make understanding how a
network system will behave more difficult. Con-
straints help designers understand how a system will
behave; conversely, flexibility tends to add complex-
ity and introduce subtle problems. An ideal network
debugger should provide the experimenter with con-
trol over the conditions of the simulation that can
lead to differing behavior. To facilitate this level
of control, when a simulation is rolled back and re-
played without changes, the simulation should ex-
hibit exactly the same behavior as it did during the
first execution.

Canopy, our network system debugger, includes
the following key features derived from the proper-
ties discussed above:

1. The ability to scale the system to utilize avail-
able hardware resources

2. The ability to roll the simulation back to any
previous time

3. The ability to replay the simulation from any
point with only specified changes

Building a scalable system that provides fea-
ture (1) requires being able to take advantage of
many physical machines. In a user-configured sce-
nario involvingn virtual computers,Canopycan dis-
tribute the computational work across up ton phys-

1



ical machines. Inter-node communication and syn-
chronization uses a master/slave system, as will be
discussed in detail in Section 4.

Nondeterminism is a significant concern for fea-
tures (2) and (3). If any of the individual nodes
behaves differently in any capacity during a replay,
then the outcome of the replay could change for rea-
sons unrelated to the modifications of the experi-
menter. Such changes can easily arise because com-
puters generally exhibit at least slightly different be-
havior between different runs – for example, be-
cause the operating system’s random number gener-
ator seeds itself using hardware event timings that
vary across executions or because context switches
occur at slightly different times. These unintended
variations between executions can confuse the exper-
imenter by adding confounding variables to a replay
in which only a specified set of variables are sup-
posed to change.

Thus, to effectively experiment with and de-
bug network systems, we need to reign-in non-
determinism and form an omniscient, controlled
viewpoint of the entire network system. This sit-
uation calls for a new type of debugger that is not
only aware of network behavior, but that controls all
“real-world” events in order to ensure perfectly re-
peatable execution. Building such a debugger nat-
urally requires some mechanism for putting the en-
tire network system into a closed environment that’s
both controlled and observable. To create this closed
environment,Canopyvirtualizes theentire network
system.

The non-determinism of an individual node de-
rives entirely from its coupling with the “real world”
– specifically, this interaction includes the precise
timing and content of asynchronous hardware events
such as clock interrupts and input events. The non-
determinism of an overall network system follows
from the non-determinism of its individual nodes ,
as well as from events that occur in the network fab-
ric. Thus, to reign-in non-determinism, we strictly
control the passage ofvirtual timeacross the system,
as well as the timing and content of “external inputs”
at individual nodes, such as network packets.

The rest of this paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 presents ba-
sic information about usingCanopy, including the
Canopyinterface (Section 3.1) and theCanopynet-
work model (Section 3.2). Section 4.1 provides de-
tails about howCanopyemulates individual nodes.
Section 4.2 describes a simple version ofCanopythat
achieves all desired network debugger functionality
except scalability. Section 4.3 deals with extending
Canopyso that it provides good scaling behavior.
Sections 5 and 6 suggest future work and conclude.

2 Related Work

2.1 Network Simulators and Emulators

The ns2 network simulator [15] is commonly used
for evaluating network protocols because it supports
a vast number of network elements and traffic mod-
els. Typically it is used for packet-level simulation,
in which packets are generated by synthetic sources.
However, it also includes emulation extensions [6]
which make it possible to “tap” live networks, in-
troducing their packets into the simulated network,
and to inject packets from the simulated network
into a live network. This sort of emulation makes it
practical to test real systems under esoteric network
topologies, but does not provide the corresponding
level of control over source behavior thatCanopy
provides by virtualizing not just the network but also
the individual nodes.

Emulab [18] overcomes the lack of realism in net-
work simulators by configuring physical computers
and network switches to deploy the desired network
topology on actual hardware. Emulab is fairly real-
istic because it runs real code on a physical topology
instead of simulation code on a simulated topology.
However, this realism comes at the cost of control
and reproducibility because the experiment is essen-
tially running “in the wild”, albeit a wild tailored to
the experiment configuration.

2.2 Replay

Replaying an execution history has been used as a
tool for debugging both distributed and single-node
systems. Nondeterminism is a common concern not

2



only in distributed, networked systems of the type
Canopytargets, but also in single-node multiproces-
sor systems, in multithreaded single-CPU systems
(since the order in which tasks are scheduled can af-
fect the outcome), or even in sequential single-CPU
programs if they access external state. Because of
this nondeterminism, replay is a useful tool in de-
bugging these systems.

2.2.1 Replay of single-node sequential programs

Though it is especially useful in networked or paral-
lel systems where execution is highly nondeterminis-
tic, replay is useful even in sequential execution en-
vironments with little or no nondeterminism: it can
be used simply as a tool for visualizing the execution
of a program. The EXDAMS debugger [1], dating
from the late 1960s, recorded the history of program
execution, and allowed a user to walk through the
log to inspect the execution and debug the system.
However, since it is not actually replaying execution,
merely browsing a pre-generated trace, it cannot roll-
back and make changes; it is simply a visualization
tool.

One of the earliest systems to apply rollback and
replay to debugging was the IGOR debugger for the
DUNE distributed operating system [7]. IGOR uses
periodic incremental snapshots of a process’s mem-
ory image to rollback a process to a previous state.
It was designed for debugging sequential, single-
process programs, and does not support parallel or
distributed systems.

2.2.2 Replay of single-node parallel programs

Recap [14] was one of the first systems to apply
this replay approach toparallel systems. To achieve
deterministic replay, it logs of system call results,
signals, and other asynchronous events (all external
sources of nondeterminism) and periodically check-
points the system’s state by forking and suspending
each process. Though it was designed for debugging
parallel systems, it only allows rolling back of a sin-
gle process, not the entire system state.

Instant Replay [13] also uses replay for debugging
parallel programs. This system records the order in

which threads acquire locks, which makes it possible
to replay an execution history provided that all inter-
action between threads occurs using shared memory
and is correctly synchronized with locks.

Tai et al. [16] considered the challenges inherent
in debugging a parallel (but single-node) Ada sys-
tem. They address the nondeterminism introduced
by concurrent execution by adding synchronization
sequences that allow an execution history to be de-
terministically replayed during debugging.

2.2.3 Replay of distributed/networked systems

Bugnet [3, 19, 20] supports the debugging of dis-
tributed systems via replay, using an approach quite
similar to Canopy’s. Replay is achieved by log-
ging inter-process messages and performing periodic
global checkpoints. The architecture is also simi-
lar to Canopy: execution is distributed across mul-
tiple nodes using a Global Control Module analo-
gous toCanopy’s master daemon and a Local Con-
trol Module analogous toCanopy’s slave daemons.
Unlike Canopy, it runs processes directly with trap-
ping of system calls rather than in full emulation;
this is less computationally intensive but does not
provide the same level of control. For example, it
would not be possible to test changes to the kernel
scheduler or network drivers. UnlikeCanopy, it also
does not appear to perform any network emulation,
merely passing messages directly. This means it is
not possible to test systems in the face of complex,
non-deterministic network behavior such as packet
delays, loss, and reordering.

Thane and Hannson [17] devised a scheme for de-
bugging real-time distributed systems using a mod-
ified kernel to provide replay. Their system logs
events such as context switches and data such as net-
work messages and system call results in order to
provide a history to replay. The most interesting idea
is their notion of time synchronization, where time is
quantized into units of timeΠ and synchronized be-
tween every node with a specified precisionδ < Π.
With this, it becomes possible to decrease the amount
of information that must be logged to enable rollback
to a specific point: the global time orderings make it
possible to rollback to an earlier point and determin-

3



istically replay to the target point.Canopyuses this
approach of deterministically replaying from avail-
able checkpoints when necessary, althoughCanopy
does not need to log context switches or other infor-
mation directly related to playback because of how
Canopyachieves deterministic replay at the hard-
ware level.

The work most similar to ours is PDB [9, 10].
PDB makes it easier to debug distributed systems
by running the entire system in a virtualization layer.
It uses Xen [4] virtualization for each of the nodes;
we considered using this approach, which would
give higher performance, inCanopy, but decided to
use Qemu instead for ease of implementation. Like
Canopy, PDB allows simulating bandwidth limita-
tions, latency, and packet loss on network links. PDB
also includes a more comprehensive GDB [8]-like
debugger for examining the state of processes run-
ning within each individual node in the system. We
considered implementing a similar debugger, but rel-
egated this part of the system to future work because
of time constraints. Our principal improvement over
PDB is our scheme for distributing the execution
over multiple physical hosts; PDB is designed to run
under a single host.

3 Using Canopy

3.1 Interface

Canopy is controlled through a Python interface –
it can be fully manipulated using the Python inter-
preter shell. Both user-friendly and programmatic
commands are available, which means that the full
expressive power of Python is available when spec-
ifying configurations or debugger operations. In the
future, a graphical interface may be added.

The interface allows emulation progress to be con-
trolled: the user can start or suspend execution, step
the system forward by a specified amount of virtual
time, or roll the system back to a previous state. It
also allows the user to view the network state via var-
ious mechanisms. The most basic such mechanism is
a simple list of packets currently in transit. The user
can use this list to select packets to drop or delay as

desired.Canopyalso allows network traffic to be vi-
sualized in timing diagrams. Figure 1 shows a timing
diagram for a simple experiment with three nodes, in
which one node sends ICMP pings to another node,
with a network latency of 1.3 seconds. Each of the
three black horizontal lines within a group repre-
sents a node, and virtual time progresses from left to
right, top to bottom. Each packet is represented by
a colored line between nodes; the color indicates the
type of the packet. This method of visualization pro-
vides a high-level overview of network traffic. For
more detailed inspection, it is possible to obtain a
PCAP-format dump of packet contents on a given
node. This data can then be viewed with a standard
tool such as Ethereal [5], parsing the packet contents
and giving essentially the view of a packet sniffer at-
tached to that virtual node.

ARP IP/ICMP/Ping

IP/ICMP/Pong

15 s

25 s

35 s

Figure 1: Ping trace

A Canopyexperiment is set up by specifying the
configuration for each of the virtual nodes in the sys-
tem. This generally consists of the MAC address/IP
address of each virtual node in the system, and an
ISO image for it to boot. For convenience, we pro-
vide a base disk image which contains a minimalistic
Debian installation with a kernel configured to run
in Qemu. Users ofCanopyhave several options for

4



creating a customized software environment: a user
may create their own disk image from scratch, mod-
ify the provided disk image, or simply create an ISO
image to be mounted in the emulated CD-ROM drive
of each virtual machine. The provided base disk im-
age automatically configures the network and runs
an initialization script contained on the ISO image
attached to the machine, if one exists. These options
make setting up small experiments easy without re-
stricting the user’s ability to create a completely cus-
tomized software environment when necessary.

3.2 Network Model

In order to effectively experiment with and debug
networked systems,Canopyneeds to provide con-
trol over the characteristics of the links that connect
virtual nodes.Canopy’s network model consists of
send and receive capacity bottlenecks at each node,
fully connected by point-to-point links, as shown in
Figure 2. The send and receive bottlenecks are im-
plemented as drop-tail queues with a specified queue
size and output rate; these bottlenecks model band-
width limitations at each node. The links between
pairs of nodes have configurable latencies and packet
loss; these characteristics approximate the aggregate
behavior of links in the rest of the system.

Figure 2:Canopy’s network model.

We selected this network model because it cap-
tures many of the critical network properties for
wide-area distributed systems, and the network em-
ulation can be implemented in a distributed manner.

Ideally it would be possible to use a more detailed
model that would, for example, take into account the
network links and queuing behavior of intermediate
routers on the network. We considered using a more
comprehensive network simulator such as ns2 to pro-
vide this functionality; unfortunately, it remains un-
clear how to implement such an emulator in a dis-
tributed, scalable manner.

The network model provides default behavior
whose parameters can be adjusted by the user. In
addition,Canopyalways allows the operator to inter-
vene, manually dropping or delaying particular pack-
ets.

3.3 Use Cases

A network system debugger withCanopy’s function-
ality can be useful in many situations. We present
some example scenarios whereCanopywould prove
useful for debugging.

Low-level systems Ben Bitdiddle has designed a
new congestion control algorithm, and wants to test
his Linux implementation to see how it performs in
a heterogeneous network of nodes with different op-
erating systems, link loss rates, and latencies. He de-
ploys his implementation in aCanopyvirtual node,
using standard ISO images for the rest of the nodes.
Using the timing diagram visualizer, he can see how
the system evolves over time. He notices a particular
sequence of packet losses triggers a corner case in the
implementation, and wonders how it would be differ-
ent if another packet is dropped. By rolling back the
system state, dropping a packet, and replaying, he
can see how the implementation behaves differently.

Here, Canopy is particularly useful for under-
standing network protocol implementation details
since Canopy performs full system virtualization us-
ing the same code as production systems. Network
simulators such as ns2 can exhibit different behav-
ior from real-world systems because they simulate a
protocol rather than executing real code in a virtual
environment.Canopy’s abilities to manipulate indi-
vidual packets are useful for this low-level applica-
tion for which the details of which packets are lost or
reordered is critical.

5



High-level systems Moving on from his conges-
tion control algorithm, Ben decides to build a peer-
to-peer file sharing system. He implements an in-
dexing system atop the Chord DHT, and would like
to test its fault-tolerance. To perform this test, he cre-
ates a disk image containing his software, and runs it
on multipleCanopyvirtual nodes. UsingCanopy’s
PCAP dumps and Ethereal, he monitors RPCs be-
tween the nodes, and usesCanopyto fail individual
nodes at various important steps in the test query exe-
cution, verifying that his system correctly detects the
failure and responds appropriately.

In high-level systems such as this one, understand-
ing individual packet timings and losses is not es-
pecially useful because a higher layer such as TCP
masks these effects. Hence,Canopy’s ability to
manipulate individual packets is no longer critical;
higher-level functions such as failing nodes are more
useful. The ability to decode the contents of pack-
ets is essential to understand how the nodes in the
system are interacting.1

4 Design

4.1 Node Emulation

At the individual node level,Canopy must differ
from a typical emulator in a number of respects.
First, in order to synchronize with other virtual ma-
chines and properly schedule events such as packet
deliveries,Canopymust precisely control the pas-
sage of time in the virtual machine. Second, in or-
der to support deterministic emulation of a whole
network system,Canopymust, of course, support
deterministic emulation at individual nodes. Third,
Canopymust have an efficient mechanism for rolling
back individual nodes to any point in the past.

To reuse existing work,Canopy’s node emulator
is built atop Qemu 0.7.2, an efficient, open-source
PC emulator based on a dynamic binary translator.
While Qemu provides emulation of the PC hardware,

1Indeed, while developingCanopy’s distributed emulation
mechanisms, it would have been extremely useful to have
Canopyavailable to debug the distributed system. Unfortu-
nately, circularity prevented this prospect from being realized.

it is intended for interactive use, and, as a result, vi-
olatesCanopy’s requirements.

In a typical emulator,virtual time— the wall clock
within the guest — progresses at the same rate that
physical time progresses on the host. While this
makes sense for typical, interactive use, it would
make precisely synchronizing multiple virtual ma-
chines potentially running on multiple hosts diffi-
cult and complicate control of the timing of hardware
events such as packet deliveries. Furthermore, such
an approach makes the emulated system dependent
on conditions at the host, which is undesirable for a
system such asCanopyin which the debug environ-
ment is supposed to be completely controlled.

To solve this problem,Canopycompletely decou-
ples the passage of virtual time and physical time.
The passage of virtual time is made proportional to
the number of guest instructions (ticks) executed by
the virtual CPU, approximating how time would pass
on a physical computer. This and a user-specified
“ticks per virtual second” value that controls the
speed of the virtual CPU are enough to fully spec-
ify the passage of time in the guest, independent of
passage of time at the host.

Canopyaugments Qemu’s dynamic translator to
insert the appropriate host instructions between each
translated guest instruction to increment the virtual
tick counter and check a tick counter breakpoint.
Canopyacts as a discrete event simulator, execut-
ing translated guest code until the precise tick of the
next scheduled event is reached. When the guest is
idle (ie, when it is executing the HLT instruction),
Canopy immediately skips virtual time forward to
the next pending event so the host CPU is fully uti-
lized. Virtual time can progress hundreds of times
faster than real time when the guest is idle. Because
the timings of events are accurate to the tick,Canopy
exhibits complete and deterministic control over the
virtual clock.

To supportdeterministic emulation, Canopymust
not be affected by sources of non-determinism in
its own execution environment.Canopy’s emulator
has, essentially, three potential sources of such non-
determinism: timing with respect to physical time,
user input, and network events. In theCanopyvir-

6



tual machine, all notions of time are based strictly on
the virtual clock instead of the host clock, so deter-
ministic timing derives naturally from the determin-
istic clock. User input typically comes in the form
of keyboard and mouse events. By simply using au-
tomation and restricting the user’s ability to interact
directly with the emulator, input non-determinism is
easily managed. Finally, events on the emulated net-
work interface (such as a packet arriving from the
Ethernet) are also scheduled from the guest clock, so
this source of non-determinism is eliminated, given a
deterministic algorithm for scheduling packet deliv-
eries.

Finally, in order to supportrollback, Canopyhas
an efficient mechanism for saving and restoring the
state of the entire virtual machine.Canopybuilds on
Qemu’s existing snapshot system. While Qemu al-
ways saves the entire virtual machine state (a process
that can take seconds),Canopy’s snapshot system
can efficiently save incremental snapshots.Canopy
maintains a set of dirty bits for the virtual machine
RAM (both addressable RAM and miscellaneous
RAM managed by virtual PCI cards), which allow
it to very efficiently record just the differences since
the previous snapshot. The constant overhead of an
incremental snapshot is under 4K, and each modified
page adds another 4K. To further improve efficiency,
these snapshots are passed via shared memory to a
separatealbumprocess, which manages the storage
of snapshots, including asynchronously writing the
snapshot data to disk while the Qemu process pro-
ceeds with emulation.

Canopyperforms an incremental snapshot of the
virtual machine every two seconds by default. To
benchmark our snapshot system, we booted Linux in
the virtual machine, a process which rapidly changes
large portions of the machine’s memory and is never
idle. With a snapshot rate of two seconds, each snap-
shot during Linux startup requires less than 20 mil-
liseconds of processor time to capture on modern
hardware. Each snapshot requires about 3 megabytes
of disk due to the significant changes in memory oc-
curring at system startup. BecauseCanopysupports
deterministic emulation, it can roll back to any point
in time by simply restoring some point before the de-

sired time then playing forward to precisely the de-
sired point in time.

4.2 Local Network Emulation

We first describe how to emulate a networked system
on a single physical machine, neglecting scalability
issues. This requires emulating every virtual node as
well as the network between them. Virtual nodes are
emulated using the Qemu-based single-node emula-
tor described above;Canopyruns one for each vir-
tual node. In addition, there is controller process
for synchronizing the virtual nodes, emulating the
network characteristics, and exchanging packets be-
tween virtual nodes. For reasons that will become
clear in Section 4.3, we will refer to this controller
process as theslave daemon.

The slave daemon communicates with the node
emulator via a simple control protocol calledxctl,
which allows the slave daemon to start and stop exe-
cution and set breakpoints. In addition, each virtual
node emulator has a virtual NE2000 Ethernet device
that the slave daemoncan indirectly manipulate using
xctl. For example, when the slave daemonwants to
have a packet appear on the virtual machine’s net-
work interface, it can ask the emulator for this event
to occur viaxctl.

Canopymaintains a constantδ defined to be the
minimum latency over all virtual network links, and
divides virtual time intoquanta of length δ. The
execution of all virtual nodes is kept synchronized
so that their virtual time is always within the same
quantum. This means that it is possible to exchange
information between virtual nodes only at the end of
each quantum: it is not possible for a packet to reach
its destination during the same quantum in which it
was sent, so each virtual node can be simulated in-
dependently for one quantum without having to stop
to check whether any other node sent a packet that
would affect it.

Network emulation proceeds as follows. The slave
daemon maintains a schedule of packets to be deliv-
ered at each virtual node. The slave daemon instructs
the emulator for each virtual node to proceed until
the next packet is scheduled to be delivered — at
which point it will be injected into the virtual Eth-

7



ernet interface — or until the current quantum ends.
If a virtual node sends a packet, the slave daemon ap-
plies the network model described in Section 3.2 to
determine when the packet should be delivered (or if
it should be dropped), and adds it to the packet de-
livery schedule as appropriate. Barrier synchroniza-
tion is used to ensure that all virtual nodes are always
executing the same time quantum: the slave daemon
does not allow any virtual node to proceed to the next
time quantum until every virtual node has completed
emulating the previous time quantum.

This technique allows a networked system to be
emulated faithfully by emulating each virtual node
and the network that connects them. Global roll-
back can be achieved by locally rolling back the state
of every node using the procedure described in Sec-
tion 4.1, as well as rolling back the state of the packet
delivery schedule. Rollback is deterministic because
packets are can be delivered precisely, with nanosec-
ond accuracy. However, with only a single physical
node, this scheme does not scale well to many virtual
nodes.

4.3 Distribution

The architecture described above accommodates em-
ulation of a networked system, but it does not scale
well. Emulating each virtual node is quite CPU-
intensive, so it is infeasible to emulate an entire dis-
tributed system on a single physical node at a rea-
sonable rate of execution. Hence, we distribute the
emulation over multiple physical nodes.

Canopyruns atop one or more networked physi-
cal machines, as depicted in Figure 3. One of these
machines is designated as themaster physical node,
and the rest of the machines areslave physical nodes.
The slave physical nodes run slave daemons, essen-
tially as in the non-distributed architecture of Sec-
tion 4.2, except that they are now overseen by a mas-
ter daemon on the master physical node, which en-
sures that the slave daemons are synchronized.

When aCanopy experiment begins, the master
daemon distributes the virtual nodes that need to be
created, assigning zero or more virtual nodes to each
slave daemon, depending on the number of physical
nodes available. It then transmits configuration infor-

· · ·

masterd

Slave physical node

slaved

album

qemu

album

qemu

Slave physical node

slaved

album

qemu

album

qemu

Figure 3: The overall architecture ofCanopy. Phys-
ical nodes are enclosed in solid boxes. Virtual nodes
are enclosed in dashed boxes. Network connections
are shown in bold.

mation, such as the necessary ISO images and MAC
addresses, to the slave daemons.

Execution proceeds in the same manner as the
non-distributed case: the emulation of virtual nodes
is synchronized to the same quantum, even for nodes
on different physical nodes. When virtual nodes send
network packets, the packets are exchanged directly
between the slave daemons; in addition, they are re-
ported to the master daemon so the user can moni-
tor network traffic and for synchronization purposes.
Barrier synchronization is performed on each slave
daemon to ensure the virtual nodes are executing the
same virtual time quantum; now, however, the slave
daemon reports to the master daemon when all of its
virtual nodes have reached the barrier, and the mas-
ter daemon does not allow the slave daemons to pro-
ceed until each slave daemon (and henceeveryvir-
tual node) has reached the barrier. In addition, the
master daemon transmits to each slave daemon the
number of packets it should receive from other slave
daemons, to ensure that no slave daemon begins ex-
ecuting the next quantum before it has received all
packets from the previous quantum.

5 Future Work

Extended network emulation. Canopy support
for an ns2-like network simulator would be useful
for situations in which highly realistic network be-

8



havior is essential. Unfortunately, using ns2 itself
with Canopywould severely limit the scalability of
the system because ns2’s design essentially requires
that all packets be delivered through some central
node running the simulation. This conflict suggests
the need for adistributednetwork simulator. Unfor-
tunately, creating a “distributed ns2” is beyond the
scope of this work.

Barrier-free synchronization. The barrier
synchronization algorithm described in Sec-
tions 4.2 and 4.3 guarantees that no packet will
ever arrive at a virtual node’s emulator after the
emulator has already simulated beyond the packet’s
arrival time. However, it introduces a performance
overhead since emulators must periodically remain
idle waiting for other emulators to reach the current
barrier. By relaxing the virtual time synchronization
requirement, we can improve performance by elim-
inating barrier synchronization. We briefly sketch
an algorithm, which we have yet to implement,
for ensuring correct emulation using speculative
execution [11] and rollback instead of barrier
synchronization.

Rather than trying to avoid the case where a packet
arrives at a virtual node emulator too late, we can in-
stead accommodate this case after it occurs. If this
situation occurs, we can roll back the virtual node’s
execution to the time before the packet was sched-
uled to arrive, deliver it, and resume execution. With
this procedure, we can eliminate the barrier synchro-
nization, and indeed even the notion of quantized
time becomes necessary. The master daemon is only
necessary to report packets to the user and allow con-
trol.

This barrier-free synchronization algorithm can
provide greater performance. Barrier synchroniza-
tion constantly assumes the worst-case for packet de-
livery: that every packet will be delivered with the
minimum latency possible. This leads to frequent
synchronizations and unnecessary blocking; rollback
will be more efficient unless the number of out-of-
order arrivals is high enough that the cost of rollback
exceeds the cost of synchronization. In these cases, a
coarse-grained synchronization combined with spec-

ulative execution may be useful.

Intra-node debugging. Canopy is intended for
holistically debugging networked systems, providing
operations that affect the entire state of the system.
However, it would be useful to be able to examine
the internal state of each node in order to understand
what is happening. For example, it would be useful
to run a GDB-like debuggerinsideeach node. How-
ever, it is not straightforward to apply a standard de-
bugger directly, since it will lose its state during roll-
back; what is actually required is a debugger aware
of replay and capable of stepping forward and back-
ward in time.

6 Conclusion

Network system debugging presents unique chal-
lenges because of the scale and adaptability of net-
work systems.Canopysolves some of the problems
related to network system debugging by providing
scalable centralized control, rollback, and determin-
istic replay. A user ofCanopycan leverage the sys-
tem to examine almost any piece of real-world net-
work software sinceCanopyperforms full machine
emulation and does not require special software cus-
tomizations. WithCanopy, the entire network is
placed under the control of the experimenter, making
it possible to experiment with network parameters
and observe the system’s resulting behavior.Canopy
makes it possible to debug a networked system as a
whole, unlike traditional debuggers which only pro-
vide limited control over part of the system.

References

[1] R. M. Balzer. EXDAMS: Extensible debugging and
monitoring system. InProc. ACM Spring Joint Com-
puter Conference, pages 567–580, 1969.

[2] W. H. Cheung, J. P. Black, and E. Manning. A
framework for distributed debugging.IEEE Trans-
actions on Computers, 7(1):106–115, Jan. 1990.

[3] R. Curtis and L. Wittie. Bugnet: A debugging
system for parallel programming environments. In
Proc. IEEE International Conference on Distributed
Computer Systems, pages 394–399, Oct. 1982.

9



[4] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
I. Pratt, A. Warfield, P. Barham, and R. Neugebauer.
Xen and the art of virtualization. InProc. 19th ACM
Symposium on Operating System Principles (SOSP
’03), Bolton Landing, New York, Oct. 2003.

[5] Ethereal: A network protocol analyzer. Available
fromhttp://www.ethereal.com/.

[6] K. Fall. Network emulation in the Vint/NS sim-
ulator. In Proc. IEEE Symposium on Computers
and Communications (ISCC ’99), Sharm El Sheikh,
Egypt, July 1999.

[7] S. I. Feldman and C. B. Brown. IGOR: a system
for program debugging via reversible execution. In
Proc. 1988 ACM SIGPLAN and SIGOPS Workshop
on Parallel and Distributed Debugging, volume 24
of ACM SIGPLAN Notices, pages 112 – 123, Madi-
son, Wisconsin, 1988.

[8] J. Gilmore and S. Shebs.GDB Internals. Free
Software Foundation, Boston, MA, second edition,
2003.

[9] T. L. Harris. Dependable computing needs pervasive
debugging. InProc. 2002 ACM SIGOPS European
Workshop, Saint-Emilion, France, Sept. 2002.

[10] A. Ho, S. Hand, and T. Harris. PDB: Pervasive de-
bugging with Xen. InProc. Fifth ACM/IEEE Inter-
national Workshop on Grid Computing (GRID ’04),
2004.

[11] D. Jefferson, B. Beckman, F. Wieland, L. Blume,
M. DiLoretto, P. Hontalas, P. Laroche, K. Sturdi-
vant, J. Tupman, V. Warren, J. Wedel, H. Younger,
and S. Bellenot. Distributed simulation and the Time
Warp operating system. InProc. 11th ACM Sympo-
sium on Operating System Principles (SOSP ’87),
pages 77–93, Austin, TX, 1987.

[12] M. Kim. On distributed and parallel debugging:
Nondeterminism and deterministic replay. Techni-
cal report, University of Washington, 2002.

[13] T. J. LeBlanc and J. M. Mellor-Crummey. Debug-
ging parallel programs with instant replay.IEEE
Transactions on Computers, 36(4):471–482, Apr.
1987.

[14] D. Z. Pan and M. A. Linton. Supporting reverse
execution for parallel programs. InProc. 1988
ACM SIGPLAN and SIGOPS workshop on paral-
lel and distributed debugging, volume 24 ofACM
SIGPLAN Notices, pages 124–129, Madison, Wis-
consin, 1988.

[15] The ns2 network simulator. Software available at
http://www.isi.edu/nsnam/ns/.

[16] K.-C. Tai, R. H. Carver, and E. E. Obaid. Debug-
ging concurrent Ada programs by deterministic re-

play. IEEE Transactions on Software Engineering,
17(1):45–63, Jan. 1991.

[17] H. Thane and H. Hansson. Using deterministic re-
play for debugging of distributed real-time systems.
In Proc. 12th EUROMICRO Conference on real-
time systems, pages 265–272, Stockholm, Sweden,
June 2000.

[18] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environ-
ment for distributed systems and networks. InProc.
Fifth Symposium on Operating Systems Design and
Implementation (OSDI ’02), pages 255–270, Dec.
2002.

[19] L. Wittie. The Bugnet distributed debugging system.
In Proc. 2nd ACM/SIGOPS European Workshop on
Making Distributed Systems Work, pages 1–3, Ams-
terdam, Netherlands, 1986.

[20] L. D. Wittie. Debugging distributed C programs
by real time replay. InProc. 1988 ACM SIGPLAN
and SIGOPS Workshop on Parallel and Distributed
Debugging, volume 24 ofACM SIGPLAN Notices,
pages 57–67, Madison, Wisconsin, 1988.

10


