
Optimizing Distributed Read-Only Transactions

Using Multiversion Concurrency

Dan R. K. Ports Austin T. Clements Irene Y. Zhang
{drkp,amdragon,iyzhang}@mit.edu

December 15, 2007

Abstract

Distributed transactional systems typically
achieve efficiency by abandoning true serial-
izability for weaker forms of consistency that
are difficult to reason about because they expose
the concurrency in the underlying system. We
explore an alternate route: weakening causality
instead of consistency. Our proposed algorithm
achieves global serializability by sacrificing global
causality, which we argue is reasonable in many
situations. This allows our algorithm to achieve
efficiency by permitting read-only transactions
to operate on stale but locally available cache
data. We present the details of a transactional
block storage protocol that implements this form
of concurrency control, as well as a performance
evaluation of an experimental implementa-
tion of this protocol and comparison against
conventional optimistic concurrency control.

1 Overview

Many distributed systems, including distributed
databases and transactional file systems, need
to provide support for distributed transactions.
Unfortunately, achieving full serializable isola-
tion for distributed transactions is an expen-
sive proposition, generally requiring locking, op-
timistic concurrency, and/or two-phase commit.
The high cost of these protocols leads many im-
plementors to consider alternatives that trade off
consistency for performance.

Achieving full consistency is expensive because
it encompasses two requirements, isolation and
freshness. To ensure that the results of concur-
rent transactions are equivalent to a serial order-
ing, each transaction must operate on a trans-
actionally consistent state; this requires either
the use of two-phase locking or a multiversion
scheme. Ensuring that transactions operate on
fresh data limits the amount of cached informa-
tion that can be used.

Existing work on weak consistency has focused
on weakening isolation to levels less than full seri-
alizability [1, 2, 3]. Though these approaches are
common in practice, allowing shorter-duration
locks or fewer aborted transactions, it is difficult
to reason about when they are correct [4]. Fol-
lowing a suggestion by Liskov and Rodrigues [5],
we take an alternative approach, weakening
causality instead of serializability.

Specifically, our approach allows read-only
transactions to run on slightly stale data, but
guarantees that they see a transactionally-
consistent state. Read/write transactions are ex-
ecuted using a standard optimistic concurrency
protocol, ensuring that they operate on the lat-
est data. Allowing read-only transactions to use
stale data not only makes it possible to avoid
conflicts involving read-only transactions, but
makes it possible to take advantage of data that
is already in the cache. To ensure that the data
seen by read-only transactions is reasonable, we
require that it reflect the results of all transac-
tions that committed on the local node, and all

1



other transactions that committed more than ε
seconds ago; these constraints are specified for-
mally in Section 3.1.

We argue this is a reasonable model for users of
the system, since many transactions do not need
to be run on the latest version of data as long
as they still see a consistent state. As a result of
our relaxed freshness requirements, the anoma-
lies that can occur are ones where a read-only
transaction A executed on one node fails to see
the results of a transaction B that recently com-
mitted on a different node. However, although
B might have happened before A, the commit
point could just as well have happened slightly
later, after A. Changing the ordering has no
visible effect as long as there has been no com-
munication between the two nodes involved to
synchronize them; the two transactions can be
said to happen concurrently and thus can be re-
ordered.1 We assume that the staleness interval
ε is small enough that a synchronizing commu-
nication between nodes is unlikely to happen in
the interval, but a more complete solution would
use Lamport clocks [6] to explicitly model syn-
chronization and concurrency in the system.

Our system optimizes the performance of read-
only transactions. Such transactions are quite
common in file systems, where the vast major-
ity (over 80%) of operations are read-only [7, 8];
our experiments also confirmed this property.
Moreover, it also eliminates potential conflicts
between read-only and read/write transactions,
and reduces concurrency overhead for read-only
transactions. It is necessary for transactions to
specify whether they are read-only or read/write
when they begin, but this requirement is not
onerous; a simple static analysis can usually de-
termine whether it is read-only.

Besides weakened causality, the principal cost
incurred by our scheme is additional storage
space. However, this cost should be small, be-
cause only a few extra revisions will need to be
kept. Moreover, storage capacity is rarely the

1This is the same as the distinction between Lamport’s
happened-before and happens-before relations [6].

limiting factor for scalability in such systems. In-
deed, a number of systems, including temporal
databases [9, 10], persistent object stores [11],
and versioned file systems [12, 13] already main-
tain a history of versions in order to enable
queries on previous system state, so such sys-
tems would incur no additional storage cost for
our protocol.

The structure of this paper is as follows: Sec-
tion 1 provides an overview of the system, ending
with this paragraph giving an outline of the pa-
per. Section 2 describes the architecture of the
system and the interface provided to clients. Sec-
tion 3 explains our concurrency control protocol
in detail, explaining what properties it guaran-
tees and how it achieves them. Section 4 de-
scribes our implementation, and Section 5 an-
alyzes its performance using file system traces.
We review related work in Section 6, and de-
scribe our plans for future work in Section 7.
Finally, Section 8 concludes.

2 System Model

Our system exposes a transactional, distributed
block store interface. The generality of a block
store allows it to serve as the storage layer for a
range of applications, from distributed database
systems to transactional file systems, etc.

As shown in Figure 1, a centralized block
server provides primary storage for block data.
Each client application connects to the server
through a standard client library. This library
presents a procedural transactional block store
interface to the application and manages com-
munications with the server as well as client-side
caching.

While frontend applications could be built di-
rectly atop the client library, the library interface
is intended for backend applications, which then
re-expose some application-specific interface to
the local host. For example, a database engine
could be built atop the library, which would then
expose a SQL interface to local database clients.
Alternatively, a file system service could be built

2



Block server

Cache

Host

· · ·

Client library

App backend

App frontendApp frontend

Host Host

Figure 1: System model

atop the library, which would then expose a file
system interface to local applications through
some kernel mechanism.

In addition to taking better advantage of
per-host resources, this client-per-node structure
may be necessitated by the causality require-
ments of the application. In particular, causal-
ity is guaranteed for all operations performed
through a particular instance of the client li-
brary, but not between instances, even if running
on the same host. For example, a file system that
created an instance of the client library for each
application would expose the user of the file sys-
tem to violations of causality, even on a single
host. Thus, the design of any application of the
block store would have to account for the appli-
cation’s causality requirements. It may be possi-
ble to provide more flexible causality guarantees,
but this is future work.

The client library itself presents a fairly
straightforward block store interface. A block
store object acts as a factory for read/write and
read-only snapshots, which provide methods for
reading blocks and committing and (in the case
of read/write snapshots) writing blocks, creat-
ing new blocks, and aborting. Any operation
on a read/write snapshot can potentially abort,
so applications must be prepared to handle this
possibility.

3 Algorithm

3.1 Properties

Specifying the desired consistency properties of
our system requires introducing a few new defi-
nitions. The first requirement we set forth is a
standard one:

Property 1 (Global Serializability). There ex-
ists a global serial ordering of all transactions
such that the results of all transactions are con-
sistent with this ordering.

Note that, although a serial ordering exists, we
have not stated what that serial ordering may be.
In particular, the serial schedule may not corre-
spond to the wall-clock-ordering of transaction
commit times.

We require that the staleness of data seen by a
transaction can be limited. (This also eliminates
several vacuous solutions!) Specifically:

Property 2 (Freshness). A read-only transac-
tion sees a consistent state of the database at a
time no earlier than ε before the time it began,
where ε is a property of the transaction.

If a single user (or program) ran a succession
of transactions, and their results were executed
out of order, chaos would ensue, so we need the
following property:

Property 3 (Local Causality). A transaction
will see the effects of all transactions on the local
node that committed before it started.

This local causality property stands in con-
trast to the typical causality property of dis-
tributed transaction systems, where a transac-
tion will see the effects of all transactions that
committed before it started. Section 1 argues
that this is a reasonable property.

Finally, our protocol allows the following nice
property:

Property 4 (Conflict-freeness). Read-only
transactions are never aborted, and can be exe-
cuted without blocking for another transaction.

3



Knowing that read-only transactions cannot
be aborted can greatly simplify programming,
since there is no need to be prepared to retry
the transaction.

3.2 Protocol

The client-server protocol divides into three sep-
arate, but interacting sub-protocols: A protocol
for filling and maintaining client-side caches, a
protocol for committing read/write transactions,
and a protocol for assigning read-only transac-
tion timestamps.

3.2.1 Cache Coherence

The server maintains a multiversion block store,
such as the one depicted in step (1) of Figure 2.
Each block in the block store consists of a set of
versions, each of which is valid over some non-
overlapping range of time. The current version
of a block is unbounded, meaning that its upper
bound is unknown until a write to that block
installs a new version at some later time.

Each client maintains a local cache with a
structure similar to that of the server’s block
store. This cache provides two operations for
reading versions:

• get(blockid, timestamp), which retrieves the
contents of the block version whose range
includes the given timestamp. This may be
the current version or a historical version of
the block.

• getLatest(blockid, transaction), which re-
trieves the current version of a block.

If the requested version is not present in the
client-side cache, it forwards the request to the
server, which responds with the contents and
time range of the appropriate version. A typical
historical request can be seen in step (2) of Fig-
ure 2. If the requested version turns out to be un-
bounded, then the server will add the client that
issued the request to holder set for that block. In
the example in Figure 2, this happens for block
B in steps (3) and (4).

Because of the block store’s multiversion na-
ture, a given version is essentially immutable
with the one proviso that an unbounded version
can become a bounded version when its upper
bound becomes fixed. The holder set of a block
tracks exactly which clients have an unbounded
version of a block in their cache so that when that
version becomes bounded, the server can imme-
diately notify these clients of this change via a
deprecation message. For example, step (5) of
Figure 2 shows the deprecation message sent to
client 1 when a new version of B is installed at
timestamp 4.

3.2.2 Read/Write Transactions

Read/write transactions use a protocol based
on a mix of standard optimistic concurrency
control [14] and multiversion concurrency con-
trol [15]. Block reads are satisfied optimistically
from the latest, unbounded version of blocks
in the client’s cache whenever possible. Block
writes go to a per-transaction side-store. Upon
commit, the read and write sets of the transac-
tion are sent to the server, which

1. Validates that all of the block versions read
by the transaction are still unbounded. This
ensures that the transaction can be placed
next in the serial ordering because it is con-
sistent with the latest version of the block
store.

2. Assigns the transaction a timestamp α one
greater than that of previously committed
transaction. The timestamp indicates that
the transaction read from the block store at
time α and created the contents of the block
store at time α + 1.

3. Installs the blocks from the transaction’s
write set at time α + 1. If this causes exist-
ing block versions to become bounded, then
the server will send out deprecations, as de-
scribed in the previous section.

This write protocol ensures global serializability
of read/write transactions.

4



A
B

1 2 3
A
B

1 2 3 4

HA = {} HB = {}

Server

Client 1 get(A
,2

)

d
ep

re
ca

te
(3

,{
B
})

Client 2 ge
tL

a
te

st
(B

)

HB = {C1, C2}

HB = {C2}

[1
..
2
]

[2
..]

[2
..
]

HB = {C2}

su
ccess

(3
)

(1)

(2)

(3)

(4)

(5)

co
m

m
it

({
B

@
2
},

{B
�

})

get(B
,2

)

Figure 2: Protocol example with two clients. (1) Initially, the server is storing two blocks spanning
times 1 to 3. Both blocks have a single historical version and no clients are in either block’s holder
sets. (2) Client 1 requests A at time 2. The server replies with the historical contents of A and
the time range of that version. (3) Client 2 requests the latest version of B. The server replies with
the current contents and time range of B. Client 2’s cache will now contain an unbounded copy of
B, so the server adds client 2 to the B’s holder set. (4) Client 1 requests B at time 2. This is the
current version of B, so the server adds client 1 to B’s holder set. (5) Client 2 performs a commit,
indicating which version of B it read and proposing a new version of B. After validating the commit
request, the server replies with the time assigned to the transaction. Because the latest version
of B was replaced, the server removes all of the clients from the holder set except the committing
client and sends deprecations to these clients.

When creating new blocks, the client gener-
ates a random block ID, which it transmits to
the server with the commit request. If the block
ID collides with an existing block ID, then the
server will abort the request. Otherwise, the
block write proceeds as usual. Block ID’s are
considered sparse enough that this should rarely
occur in practice. Our implementation, for ex-
ample, uses 64-bit integers, making the proba-
bility of a conflict negligible.

Our algorithm goes beyond the standard
validate-on-commit approach of optimistic con-
currency control by employing active aborts. Be-
cause the cache is actively kept coherent by asyn-
chronous deprecation messages, the validation
condition given above can be checked continu-
ously on the client side. Specifically, if a depreca-
tion arrives for a block in an active transaction’s

read set, then it is impossible for that transaction
to pass validation, so it can be aborted as soon
as possible. Validation on commit is still neces-
sary, however, as a critical deprecation message
and a commit message may have crossed paths
on the network; however, once a transaction re-
quests a commit, it is very likely that the commit
will succeed simply because the window during
which such a conflict could arise is very small.

The standard optimistic approach of waiting
until commit time to detect conflicts has a num-
ber of drawbacks. First, by waiting to abort a
transaction, work is wasted in the event of a con-
flict [16]. Second, in a distributed setting where
the commit data does not reside on the node
performing validation, transactions must either
send committed data to the server in the commit
request, or they must engage in a multistage pro-

5



tocol to first validate the commit before sending
the data. The first approach wastes network re-
sources if the commit fails, while the second ap-
proach incurs latency and may stall other trans-
actions if the commit succeeds. Active aborts,
on the other hand, make it reasonable to use a
single-stage protocol that sends committed data
along with the commit request because of the
low probability of a conflict.

Furthermore, asynchronous deprecations also
permit better optimism and cache usage when re-
trieving blocks. A pessimistic alternative to the
read protocol given above is to employ a cache
update protocol that always contacts the server
when requesting the latest version of a block in-
stead of assuming the cached copy is up-to-date.
This would ensure that a read/write transaction
always operates on the latest copy of the data.
However, doing so incurs a full network round-
trip for every block read. With asynchronous
deprecations, the transaction will know that it
was overly optimistic and should therefore abort
within half the time of a network round-trip of
retrieving the block from the local cache. Thus,
the only disadvantage of optimistically reading
cached data is that events during the half round-
trip window following the read could force the
transaction to abort where the pessimistic read
protocol would simply have blocked. However,
we assume that write conflicts are sufficiently
rare in the workload that the trade-off is worth-
while.

3.2.3 Read-Only Transactions

Read-only transactions operate in a model simi-
lar to snapshot isolation [2]. A read-only trans-
action is assigned a timestamp as soon as it starts
and always reads versions from that timestamp.
Choosing a particular timestamp to operate at
ensures the global serializability of read-only
transactions with respect to read/write transac-
tions. Since read-only transactions do not have
observable effects, they are always serializable
with respect to each other.

Choosing an appropriate timestamp is criti-

cal both to ensuring the properties laid out in
Section 3.1 and for the efficiency of read-only
transactions. The more flexibility afforded in
the assignment of a timestamp, the better locally
cached data can be taken advantage of.

In order to guarantee local causality, the
timestamp must be greater than the largest
timestamp assigned to any committed local
read/write transaction. Because the read/write
protocol assigns timestamps in increasing or-
der, it is sufficient to simply use a timestamp
greater than that of the last locally committed
read/write transaction. Note that, because read-
only transactions do not have effects, multiple
read-only transactions can be assigned the same
timestamp.

The write protocol presented in the previ-
ous section ensures that updates to the server’s
block store always occur with monotonically in-
creasing timestamps. This means that each
client can keep track of a global least upper
bound (GLUB)—a timestamp before which no
further updates can occur—by keeping track of
the timestamp of the last deprecation message
or local commit. Because monotonicity guar-
antees that read/write transactions cannot be
assigned a timestamp less than the GLUB, as-
signing a read-only transaction a timestamp less
than or equal to the GLUB is sufficient to ensure
conflict-freeness between read-only transactions
and read/write transactions.

Furthermore, because local writes update the
GLUB, the window of allowable timestamps al-
ways contains at least one timestamp, read-only
transactions never have to block until another
transaction widens the window.

Freshness. While assigning timestamps less
than or equal to the GLUB is sufficient to guar-
antee conflict-freeness, it is not necessary. In
particular, if the last GLUB update occurred
more than ε seconds ago, this may be too restric-
tive to ensure freshness. Thus, each client keeps
track of the wall-clock time of the last update to
its GLUB. When a transaction with ε freshness

6



is started, if the GLUB is more than ε seconds
old, the client requests a GLUB update from the
server before assigning the transaction a times-
tamp. On a relatively active client with a large
cache, such updates may not be necessary very
often because of frequent GLUB updates from
other communication with the server.

Assuming the network latency is less than ε,
assigning the transaction a timestamp of the
GLUB received from the server is sufficient to
guarantee freshness. If the network latency is
greater than ε, then it is impossible to simulta-
neously provide freshness and conflict-freeness in
any system.

4 Implementation

Storage. The client and server share a ver-
sioned block storage system. This system pro-
vides support for versioned block lookups and re-
trievals, writes, and deprecations, and transpar-
ently provides aggressive in-memory caching. On
the server side, it provides block durability, while
the same mechanisms are used on the client side
to perform aggressive on-disk caching. The stor-
age system is completely unaware of the transac-
tion protocol, instead providing hooks that are
used by higher layers in the client and server to
provide the protocol.

Communication. The client and server com-
municate via TCP using bi-directional asyn-
chronous message passing built atop a custom
channel multiplexing protocol and the Java se-
rialization protocol. In order to reduce the
space overheads incurred by Java serialization,
we slightly modified the low-level protocol and
hand-wrote serializers for messages with non-
trivial state.

Client. The client library provides the trans-
actional block store interface to the overall sys-
tem. It provides methods to begin read-only and
read/write transactions; to read, write, and cre-

ate blocks; and to commit and abort transac-
tions.

Server. The server responds to requests for
blocks from clients, and commit requests. When
a commit request is received, it performs a se-
rial backwards-validation protocol to determine
if the transaction can commit, and if so, commits
it to stable storage and sends out deprecation
messages to any clients that may have affected
blocks in their cache.

5 Evaluation

We evaluated the system using a trace of NFS ac-
tivity from the Berkley Auspex file system [17].
We compared conventional optimistic concur-
rency control to our read-optimized OCC algo-
rithm for a number of performance metrics: net-
work traffic, and client and server CPU usage.
In each case, we found that our system offered
substantial improvements over OCC for the file
system workload. While both algorithms provide
global serializability, conventional OCC incurs
the additional cost of providing global causality,
which this experiment quantifies.

The trace runner constructs a simple file sys-
tem atop the block store and simulates the con-
tents of the trace. For each host in the trace, the
trace runner constructs an independent instance
of the client library, complete with its own cache.
The trace is replayed by simulating an ext2-like
file system complete with fixed-size data blocks,
inodes, indirect inodes and doubly indirect in-
odes.

Since the workload is not transactional, trans-
actions were inferred from open and close re-
quests. Stat requests were assumed to be single
operation transactions. Another option for infer-
ring transactions would have been to assume one
transaction per file system operation. This as-
sumption more closely emulates POSIX seman-
tics, but does not exercise the system as well
because the transactions are much shorter.

The trace runner simulates conventional OCC

7



by strictly using read/write transactions, even
for transactions that perform only reads. In a
pure read/write workload, our algorithm reduces
to conventional OCC, with the optimization of
active aborts.

Table 1 presents the performance of our sys-
tem for 100,000 file system operations, span-
ning approximately 1 hour of the trace and in-
volving 134 distinct clients. Transaction infer-
ence yielded 65883 read-only transactions and
3882 read/write transactions. In all situations,
about 100 transactions were aborted due to con-
flicts.

Read-optimized OCC performs better all
around because a large percentage of the file sys-
tem workload is read-only. Network traffic is
reduced because read-only transactions do not
need to communicate with the server. Aggre-
gate CPU usage is reduced because less overhead
is incurred validating and serializing read-only
transactions.

Unfortunately, because the Auspex traces
were gathered by snooping NFS traffic, they can-
not account for the effects of client-side NFS
caching. This reduces the effectiveness of our
own system’s caching for the trace and thus
the overall performance of read-optimized OCC.
Therefore, for a complete file system trace, we
would expect the performance benefits of our
system over conventional OCC to be even more
dramatic.

6 Related Work

Multiversion concurrency control. The
general concept of multiversion concurrency con-
trol has a long history, dating back to Reed’s
work in 1978 [18, 19]. Many variations on its use
have been proposed for use in both centralized
and distributed database systems [15]. Multi-
version concurrency is used most commonly in
the form of snapshot isolation (also a weakened
consistency model, as described below), which
is implemented in several popular commercial
databases. The benefit of multiversion concur-

rency is that having multiple versions of the same
data object makes it possible to perform some
operations without locking. The exact degree to
which locks can be avoided depends on the spe-
cific protocol; variants range from multiversion
two-phase locking, where both read and write
locks are used, to optimistic timestamp-ordering,
with no locks at all [20].

Optimistic concurrency control. Multiver-
sion concurrency control is frequently combined
with optimistic concurrency control [14], making
it possible to avoid locks entirely by aborting and
retrying if a conflict occurs. Our work uses opti-
mistic concurrency control in essentially its stan-
dard form for read/write transactions. The use
of a single server greatly simplifies validation and
ordering in our optimistic concurrency control; a
protocol like CLOCC [21] would be required for
the multiple-server case. Though our mechanism
for optimizing read-only actions could also be
combined with a locking protocol for read/write
transactions, we have chosen an optimistic pro-
tocol instead because previous work has shown
that optimistic concurrency control provides a
performance benefit in distributed systems [16].

Weak consistency. Many proposals for isola-
tion levels less than full serializability exist [1, 22,
2, 3, 23]. The ANSI SQL standard [22] defines
three such isolation levels, and many databases
default to one of these. Snapshot isolation [2] is
also used by many databases. Snapshot isolation
ensures that each transaction reads from a con-
sistent snapshot of the database, but is not fully
serializable because it suffers from an anomaly
known as write skew because it only detects con-
flicts between the write sets of two transactions,
not read/write conflicts. Our handling of read-
only transactions could be viewed as snapshot
isolation, albeit perhaps on a less-than-current
snapshot, but we avoid write skew by tracking
both the read and write sets of read/write trans-
actions.

The plethora of work attempting to categorize

8



Conventional OCC with Read Optimization
OCC ε = 2 secs ε = .1 secs ε = 0 secs

Network traffic 34.8 MB 27.19 MB 28.14 MB 28.14 MB
Avg. client CPU time .66 secs .22 secs .25 secs .43 secs

Server CPU time 32.67 secs 9.55 secs 13.07 secs 25.63 secs

Table 1: Performance results for a trace of 100,000 file system operations. The trace was run with
conventional OCC and read-optimized OCC with different freshness requirements, ε.

these weak consistency models attests to their
complexity: for example, [3] is a critique of the
definitions in [2], which is itself a critique of the
definitions in the SQL standard [22]. It is simi-
larly difficult to reason about the cases in which
such consistency is sufficient. For example, snap-
shot isolation is generally considered “almost”
serializable (to the extent that it is the high-
est level of isolation offered by many databases).
Many workloads, such as the TPC-C benchmark,
do indeed execute serializably under snapshot
isolation; however, verifying that this is the case
requires non-trivial analysis [4].

Our work is similar in spirit to these forms of
weak consistency, having the same goal of im-
proving performance by allowing some anoma-
lies. However, motivated by the difficulty in
reasoning about non-serializable execution lev-
els, we relaxed the causality requirements in-
stead of consistency. As a result, our protocol
is not directly comparable to other weak con-
sistency schemes; the only anomalies that can
be observed are ones in which different, but still
transactionally consistent, states are observed on
two different nodes.

Read-only transaction optimization. A
number of optimizations that take advantage
of read-only transactions have been proposed.
Garcia-Molina and Wiederhold defined consis-
tency and currency requirements for read-only
transactions, and introduced the concept of in-
sularity to determine when a transaction can be
executed locally on one node of a distributed
database [24]. Our processing of read-only trans-
actions is similar to the algorithms they propose,

but our use of optimistic concurrency control for
read/write transactions leads to some important
differences. Other work (e.g. [25, 26]) has consid-
ered how to minimize the number of versions that
need to be retained in order to optimize read-
only transactions, but it is generally focused on
avoiding locking rather than taking advantage of
cached data in a distributed system.

C-Store [27] applies the same concept in a dif-
ferent environment, running read-only queries in
a data warehouse on an old version using snap-
shot isolation.

7 Future Work

7.1 Multiple Servers

The protocol described in Section 3.2 assumes
a single, central server; this decision was made
to simplify the protocol and the implementa-
tion. With a few modifications, the protocol can
also be used in a more distributed setting. We
sketch an outline of such a modified protocol.
For simplicity, we consider an environment where
blocks are statically partitioned between multi-
ple servers. If all blocks in a transaction are on
one server, the transaction proceeds as before.
Otherwise, one server is chosen as a coordinator,
and it executes a two-phase commit protocol.

The client must ensure that messages are pro-
cessed in timestamp order. With a single server,
and an order-preserving (TCP) connection, this
task is trivial, but with multiple servers it is
somewhat complex. A simple solution is to main-
tain loosely synchronized clocks on all machines
(using NTP or a similar protocol), then include

9



timestamps in each message and delay the pro-
cessing of each message until its timestamp has
been reached [21]; another alternative is to ex-
plicitly use logical clocks [6].

An open problem is that two-phase commit
is necessary for multi-server consistency, but is
at odds with the conflict-freeness of read-only
transactions. Specifically, the problem is that
when subordinates are in prepared state, the
fate of the prepared transaction is unknown; if a
read-only transaction attempts to retrieve an af-
fected block, it must block until the transaction
commits or aborts. One solution is simply to re-
lax the conflict-freeness requirement, but this is
undesirable. An alternative might be to assign
transaction timestamps lazily: rather than hav-
ing the client choose a timestamp, it could choose
a range of timestamps to send to the server in
its get requests, and the server could choose
a timestamp that avoids blocking on prepared
transactions.

7.2 Generalized Causality

Out-of-band communication between nodes can
expose the lack of global causality in the system.
This could arise either from applications opening
their own network connections, or through ex-
ternal observers with the ability to observe more
than one node in the system. While little can be
done about external observers except to reduce
the acausality to an acceptable minimum, it is
unfortunate that a distributed application wish-
ing to use a transactional infrastructure service
based on our algorithm cannot better character-
ize its causality needs to the infrastructure. Gen-
eralized causality would permit such characteri-
zations so that applications would not be limited
to the strict dichotomy between local causality
and global acausality.

7.3 Dynamic Read-Only Timestamps

Our protocol currently assigns read-only trans-
actions a timestamp no earlier than the GLUB,
even if the freshness requirement ε is much more

flexible. In some circumstances, it can be desir-
able to use an earlier timestamp for which more
cached data is present. Choosing the best times-
tamp to maximize cached data availability is a
difficult problem. The timestamp is currently
assigned when a transaction begins; at this time
no information is available about what data will
be read.

We could instead assign timestamps lazily, ini-
tially beginning with a window of maximum al-
lowable size (ending at the current time, and
beginning at the timestamp of the freshness
requirement or the last committed read/write
transaction). Each successive read would choose
an appropriate version, from the cache if pos-
sible, and narrow the window to its intersection
with the validity interval of that version. This al-
lows more flexibility to use cached versions. Ad-
ditionally, hints about the read set of the trans-
action could be used to make a more informed
decision at transaction start time.

7.4 Applications

We would like to evaluate the performance of
our system using real applications in addition
to traces. We would like to have some sort of
database workload, perhaps using our system as
the bottom layer of SimpleDB. A transactional
file system would also make an interesting work-
load; an actual implementation would make it
possible to avoid the NFS caching effects we ob-
served on our trace workloads. A file system im-
plementation might benefit from expanding the
block store interface to be aware of file metadata,
allowing for several optimizations; to be practi-
cal, it would also require a system for inferring
transactions from existing non-transactional ap-
plication workloads.

8 Conclusion

Systems that use distributed transactions, such
as distributed databases and transactional file
systems, often sacrifice full serializability for

10



performance. Unfortunately, this optimization
makes it extremely difficult to reason about the
correctness of the system. In this paper, we ar-
gued that similar performance benefits can be
attained by weakening causality in lieu of aban-
doning serializability, thus maintaining the cor-
rectness of the system.

Our system provides a global serial ordering of
transactions, but weakens causality by allowing
read-only transactions to run on stale data. The
stale data is guaranteed to be no older than some
user-defined ε before the beginning of the trans-
action. Local causality is maintained by ensur-
ing read-only transactions observe all previous,
locally committed read/write transactions. Fi-
nally, our system ensures that read-only trans-
actions never abort, conflict, or block, yielding
vastly improved performance for workloads that
are heavily read-only.

We implemented our system using an OCC-
like protocol with active aborts for read/write
transactions, and our optimized protocol for
read-only transactions. We compared our sys-
tem’s performance to conventional OCC, which
provides both global serializability and global
causality. Our experiments using the Auspex
traces showed that our system does indeed signif-
icantly out-perform conventional OCC without
having to sacrifice global serializability.

References

[1] J. N. Gray, R. A. Lorie, G. R. Putzolu, and
I. L. Traiger, “Granularity of locks and degrees
of consistency in a shared data base,” in IFIP
Working Conference on Modelling of Data Base
Management Systems, 1977, pp. 1–29.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil, “A critique of ANSI
SQL isolation levels,” in Proceedings of the
1995 ACM SIGMOD International Conference
on Management of Data. San Jose, CA, USA:
ACM, June 1995.

[3] A. Adya, B. Liskov, and P. O’Neil, “General-
ized isolation level definitions,” in Proceedings
of the 16th IEEE International Conference on

Data Engineering (ICDE ’00). San Diego, CA,
USA: IEEE, Mar. 2000.

[4] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil,
and D. Shasha, “Making snapshot isolation seri-
alizable,” ACM Transactions on Database Sys-
tems, vol. 30, no. 2, pp. 492–528, June 2005.

[5] B. Liskov and R. Rodrigues, “Transactional file
systems can be fast,” in Proceedings of the 11th
ACM SIGOPS European Workshop. Leuven,
Belgium: ACM, Sept. 2004.

[6] L. Lamport, “Time, clocks, and ordering of
events in a distributed system,” Communica-
tions of the ACM, vol. 21, no. 7, pp. 558–565,
July 1978.

[7] W. Vogels, “File system usage in Windows NT
4.0,” in Proceedings of the 17th ACM Symposium
on Operating Systems Principles (SOSP ’99).
Kiawah Island, SC, USA: ACM, Dec. 1999.

[8] J. K. Ousterhout, H. D. Costa, D. Harrison,
J. A. Kunze, M. Kupfer, and J. G. Thompson,
“A trace-driven analysis of the UNIX 4.2BSD file
system,” in Proceedings of the 13th ACM Sym-
posium on Operating Systems Principles (SOSP
’91). Pacific Grove, CA, USA: ACM, Oct. 1991.

[9] M. Stonebraker, “The design of the POST-
GRES storage system,” in Proceedings of the
13th International Conference on Very Large
Data Bases (VLDB ’87), Brighton, United King-
dom, Sept. 1987.

[10] G. Özsoyoǧlu and R. T. Snodgrass, “Tempo-
ral and real-time databases: A survey,” IEEE
Transactions on Knowledge and Data Engineer-
ing, vol. 7, no. 4, pp. 513–532, Aug. 1995.

[11] C.-H. Moh and B. Liskov, “TimeLine: A high
performance archive for a distributed object
store,” in Proceedings of the 1st USENIX Sym-
posium on Networked Systems Design and Im-
plementation (NSDI ’04). San Francisco, CA,
USA: USENIX, Mar. 2004.

[12] D. S. Santry, M. J. Feeley, N. C. Hutchinson,
A. C. Veitch, R. W. Carton, and J. Ofir, “Decid-
ing when to forget in the Elephant file systemq,”
in Proceedings of the 17th ACM Symposium on
Operating Systems Principles (SOSP ’99). Ki-
awah Island, SC, USA: ACM, Dec. 1999.

[13] D. Hitz, J. Lau, and M. Malcolm, “File system
design for an NFS file server appliance,” in Pro-
ceedings of the 1994 USENIX Winter Technical
Conference. San Francisco, CA, USA: USENIX,
Jan. 1994.

[14] H. T. Kung and J. T. Robinson, “On optimistic

11



methods for concurrency control,” ACM Trans-
actions on Database Systems, vol. 6, no. 2, pp.
213–226, June 1981.

[15] P. A. Bernstein and N. Goodman, “Concurrency
control in distributed database systems,” ACM
Computing Surveys, vol. 13, no. 2, pp. 185 – 221,
June 1981.

[16] B. Liskov, M. Castro, L. Shrira, and A. Adya,
“Providing persistent objects in distributed sys-
tems,” in Proceedings of the 13th European
Conference on Object-Oriented Programming
(ECOOP ’99), Lisbon, Portugal, June 1999.

[17] M. Blaze, “NFS tracing by passive network mon-
itoring,” in Proceedings of the 1992 USENIX
Winter Technical Conference. San Francisco,
CA, USA: USENIX, Jan. 1992.

[18] D. P. Reed, “Naming and synchronization in a
decentralized computer system,” Ph.D. disser-
tation, Massachusetts Institute of Technology,
Cambridge, MA, USA, Sept. 1978.

[19] ——, “Implementing atomic actions on decen-
tralized data,” ACM Transactions on Computer
Systems, vol. 1, no. 1, pp. 3–23, Feb. 1983.

[20] P. A. Bernstein, V. Hadzilacos, and N. Good-
man, Concurrency Control and Recovery In
Database Systems. Boston, MA, USA: Addison-
Wesley, Feb. 1987.

[21] A. Adya, R. Gruber, B. Liskov, and U. Mahesh-
wari, “Efficient optimistic concurrency control
using loosely synchronized clocks,” in Proceed-
ings of the 1995 ACM SIGMOD International
Conference on Management of Data. San Jose,
CA, USA: ACM, June 1995.

[22] American National Standards Intitute,
“Database language - SQL,” American Na-
tional Standard for Information Systems
X3.135-1992, Nov. 1992.

[23] A. Adya, “Weak consistency: A generalized
theory and optimistic implementations for dis-
tributed transactions,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, Cambridge,
MA, USA, Mar. 1999.

[24] H. Garcia-Molina and G. Wiederhold, “Read-
only transactions in a distributed database,”
ACM Computing Surveys, vol. 7, no. 2, pp. 209–
234, June 1982.

[25] W. E. Weihl, “Distributed version management
for read-only actions,” in Proceedings of the 4th
ACM Symposium on Principles of Distributed
Computing (PODC ’85). Minaki, Ontario,
Canada: ACM, Aug. 1985.

[26] K.-L. Wu, P. S. Yu, and M.-S. Chen, “Dynamic
finite versioning: An effective versioning ap-
proach to concurrent transaction and query pro-
cessing,” in Proceedings of the 9th IEEE Interna-
tional Conference on Data Engineering (ICDE
’93). Vienna, Austria: IEEE, Apr. 1993.

[27] M. Stonebraker, D. J. Abadi, A. Batkin,
X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil, P. O’Neil,
A. Rasin, N. Tran, and S. Zdonik, “C-Store: A
column-oriented DBMS,” in Proceedings of the
31th International Conference on Very Large
Data Bases (VLDB ’05), Trondheim, Norway,
Sept. 2005.

[28] The 17th ACM Symposium on Operating Sys-
tems Principles (SOSP ’99). Kiawah Island,
SC, USA: ACM, Dec. 1999.

[29] The 1995 ACM SIGMOD International Confer-
ence on Management of Data. San Jose, CA,
USA: ACM, June 1995.

12


