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Distributed Transactions

Distributed transactions are useful

for many applications

...but slow
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System Architecture

Block server

Client library

Cache Cache

Client library

Application Application
· · ·
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Distributed Transactions Can Be Fast

Lower isolation levels?
e.g. READ COMMITTED, snapshot isolation, ...

any hope for correctness? sanity?

Our solution:

weaken causality instead of serializability
All operations transactionally consistent

Read only transactions may run slightly in past
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Properties

1 Serializability
2 ε-Freshness
3 r/o transactions do not block or abort
4 Local Causality

Anomaly: acausality

A read-only transaction may not see the results of a
transaction that just committed on another node.
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Performance

Built ext2-like filesystem atop block store

Replayed 20,000 operations over 13 minutes
from Berkeley NFS server trace

116 parallel clients

Inferred transactions (open-close)

2 second allowable staleness

Compared against standard OCC
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Performance

Plain OCC Read-Opt. Improvement

Network 15.0 MB 11.0 MB 27%

Aborts 392 22 94%

CPU time 14.5 min. 35 sec. 96%

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions


