Optimizing Distributed Read-Only Transactions

Using Multiversion Concurrency

Dan Ports Austin Clements Irene Zhang

Tuesday, December 11, 2007

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions

Distributed Transactions

Distributed transactions are useful
for many applications

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions

Distributed Transactions

Distributed transactions are useful
for many applications

...but slow

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions

System Architecture

Application

Application

@— Client library

Cache

Client library —@

Block server

Cache

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions

System Architecture

Block server 8

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions

System Architecture

Block server 8

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions

Distributed Transactions Can Be Fast

Lower isolation levels?
@ e.g. READ COMMITTED, snapshot isolation, ...
@ any hope for correctness? sanity?

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions

Distributed Transactions Can Be Fast

Lower isolation levels?
@ e.g. READ COMMITTED, snapshot isolation, ...
@ any hope for correctness? sanity?

Our solution:

weaken causality instead of serializability
@ All operations transactionally consistent
@ Read only transactions may run slightly in past

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions

Q Serializability

© c-Freshness

@ r/o transactions do not block or abort
Q@ Local Causality

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions

Q Serializability

© c-Freshness

@ r/o transactions do not block or abort
Q@ Local Causality

Anomaly: acausality

A read-only transaction may not see the results of a
transaction that just committed on another node.

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions

Performance

Built ext2-like filesystem atop block store

Replayed 20,000 operations over 13 minutes
from Berkeley NFS server trace

@ 116 parallel clients

Inferred transactions (open-close)
2 second allowable staleness

@ Compared against standard OCC

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions

Performance

Plain OCC Read-Opt. Improvement

Network 15.0 MB 11.0 MB 27%
Aborts 392 22 94%
CPU time 14.5 min. 35 sec. 96%

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions

