
Optimizing Distributed Read-Only Transactions
Using Multiversion Concurrency

Dan Ports Austin Clements Irene Zhang

Tuesday, December 11, 2007

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions



Distributed Transactions

Distributed transactions are useful

for many applications

...but slow

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions



Distributed Transactions

Distributed transactions are useful

for many applications

...but slow

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions



System Architecture

Block server

Client library

Cache Cache

Client library

Application Application
· · ·

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions



System Architecture

Block server

Client library

Cache Cache

Client library

Node Node

DB frontend DB frontend

DB client DB client DB client DB client

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions



System Architecture

Block server

Client library

Cache Cache

Client library

Node Node

FS frontend FS frontend

Application Application Application Application

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions



Distributed Transactions Can Be Fast

Lower isolation levels?
e.g. READ COMMITTED, snapshot isolation, ...

any hope for correctness? sanity?

Our solution:

weaken causality instead of serializability
All operations transactionally consistent

Read only transactions may run slightly in past

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions



Distributed Transactions Can Be Fast

Lower isolation levels?
e.g. READ COMMITTED, snapshot isolation, ...

any hope for correctness? sanity?

Our solution:

weaken causality instead of serializability
All operations transactionally consistent

Read only transactions may run slightly in past

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions



Properties

1 Serializability
2 ε-Freshness
3 r/o transactions do not block or abort
4 Local Causality

Anomaly: acausality

A read-only transaction may not see the results of a
transaction that just committed on another node.

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions



Properties

1 Serializability
2 ε-Freshness
3 r/o transactions do not block or abort
4 Local Causality

Anomaly: acausality

A read-only transaction may not see the results of a
transaction that just committed on another node.

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions



Performance

Built ext2-like filesystem atop block store

Replayed 20,000 operations over 13 minutes
from Berkeley NFS server trace

116 parallel clients

Inferred transactions (open-close)

2 second allowable staleness

Compared against standard OCC

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions



Performance

Plain OCC Read-Opt. Improvement

Network 15.0 MB 11.0 MB 27%

Aborts 392 22 94%

CPU time 14.5 min. 35 sec. 96%

Dan Ports, Austin Clements, Irene Zhang Optimizing Distributed Read-Only Transactions


