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abstract

Distributed in-memory application data caches like memcached are a popular solution
for scaling database-driven web sites. 	ese systems increase performance signi�cantly
by reducing load on both the database and application servers. Unfortunately, such
caches present two challenges for application developers. First, they cannot ensure
that the application sees a consistent view of the data within a transaction, violating
the isolation properties of the underlying database. Second, they leave the application
responsible for locating data in the cache and keeping it up to date, a frequent source
of application complexity and programming errors.

	is thesis addresses both of these problems in a new cache called TxCache.
TxCache is a transactional cache: it ensures that any data seen within a transaction,
whether from the cache or the database, re�ects a slightly stale but consistent snap-
shot of the database. TxCache also o�ers a simple programming model. Application
developers simply designate certain functions as cacheable, and the system automati-
cally caches their results and invalidates the cached data as the underlying database
changes.

Our experiments found that TxCache can substantially increase the performance
of a web application: on the RUBiS benchmark, it increases throughput by up to
5.2× relative to a system without caching. More importantly, on this application,
TxCache achieves performance comparable (within 5%) to that of a non-transactional
cache, showing that consistency does not have to come at the price of performance.

	esis Supervisor: Barbara H. Liskov
Title: Institute Professor
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1
I N T R O D U C T I O N

	is thesis addresses the problem of maintaining consistency in a cache of application-
computed objects.

Application-level caches are a popular solution for improving the scalability of
complex web applications: they are widely deployed by many well-known websites.
	ey are appealing because they can be implemented with a simple, scalable design,
and their �exibility allows them to address many bottlenecks, as we discuss below.

However, existing caches place a substantial burden on application developers.
	ey do not preserve the isolation guarantees of the underlying storage layer, intro-
ducing potential concurrency bugs. 	ey also place the responsibility for locating
and updating data in the cache entirely in the hands of the application, a common
source of bugs. Consider, for example, the following report of a major outage at one
of the world’s most-visited web sites:

Early today Facebook was down or unreachable for many of you for
approximately 2.5 hours. 	is is the worst outage we’ve had in over four
years, and we wanted to �rst of all apologize for it. We also wanted to
provide much more technical detail on what happened and share one
big lesson learned.

	e key �aw that caused this outage to be so severe was an unfortu-
nate handling of an error condition. An automated system for verifying
con�guration values ended up causing much more damage than it �xed.
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	e intent of the automated system is to check for con�guration
values that are invalid in the cache and replace them with updated values
from the persistent store. 	is works well for a transient problem with
the cache, but it doesn’t work when the persistent store is invalid.

Today we made a change to the persistent copy of a con�guration
value that was interpreted as invalid. 	is meant that every single client
saw the invalid value and attempted to �x it. Because the �x involves
making a query to a cluster of databases, that cluster was quickly over-
whelmed by hundreds of thousands of queries a second.

…
	e way to stop the feedback cycle was quite painful – we had to

stop all tra�c to this database cluster, which meant turning o� the site.
(Robert Johnson, Facebook [50])

	is incident highlights both the importance of application-level caches – not
a mere optimization, they are a critical part of the site’s infrastructure – and the
challenges of cache management.

	is thesis presents techniques that address these challenges while preserving the
�exibility and scalability bene�ts of existing application-level caches.

1.1 the case for application-level caching

Today’s web applications are used by millions of users and demand implementations
that scale accordingly. A typical system includes application logic (often implemented
in web servers) and an underlying storage layer (often a relational database) for
managing persistent state. Either layer can become a bottleneck [6]. Either type
of bottleneck can be addressed, but with di�culty. Increasing database capacity is
typically a di�cult and costly proposition, requiring careful partitioning or complex
distributed databases. Application server bottlenecks can be easier to address – simply
adding more nodes is usually an option – but no less costly, as these nodes don’t
come for free.

Not surprisingly, many types of caches have been used to address these problems,
ranging from page-level web caches [20, 26, 107, 109] to database replication sys-
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tems [8, 54, 75] and query/mid-tier caches [39, 58, 100]. But increasingly complex
application logic and more personalized web content has made it more useful to
cache the result of application computations. As shown in Figure 1-1, the cache does
not lie in front of the application servers (like a page-level web cache) or between
the application server and database (like a query cache). Rather, it allows application
to cache arbitrary objects. 	ese objects are typically generated from the results of
one or more database queries along with some computation in the application layer.

	is �exibility allows an application-level cache to replace existing caches: it
can act as database query cache, or it can act as a web cache and cache entire
web pages. But application-level caching is more powerful because it can cache
intermediate computations, which can be even more useful. For example, many web
sites have highly-personalized content, rendering whole-page web caches largely
useless; application-level caches can separate common content from customized
content and cache the common content separately so it can be shared between users.
Database-level query caches are also less useful in an environment where processing is
increasingly done within the application. Unlike database-level solutions, application-
level caches can also address application server load; they can avert costly post-
processing of database records, such as converting them to an internal representation,
or generating partial HTML output. For example, MediaWiki uses memcached to
store items ranging from translations of interface messages to parse trees of wiki
pages to the generated HTML for the site’s sidebar.

1.2 existing caches are difficult to use

Existing application-level caches typically present a hash table interface to the ap-
plication, allowing it to get and put arbitrary objects identi�ed by a key. 	is
interface o�ers two bene�ts:

• the interface is �exible, in that it allows the application to use the cache to
store many di�erent types of objects. As discussed above, it can be used to hold
database query results, entire generated web pages, or anything in between.

• the interface lends itself to a simple, scalable implementation. A typical example
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Figure 1-1: Architecture of a system using an application-level cache
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is memcached [65], which stores objects on a cluster of nodes using a consistent
hashing algorithm [52] – making the cache a simple implementation of a
distributed hash table [82,89,96,108]. Importantly, the cache is stored entirely
in memory, and does not attempt to do any processing other than returning the
object identi�ed by the requested key. 	is architecture scales well; the largest
memcached deployment has thousands of nodes with hundreds of terabytes of
in-memory storage [56].

But the get/put interface has a serious drawback: it leaves responsibility for
managing the cache entirely with the application. 	is presents two challenges for
developers, which we address in this thesis.

Challenge 1: Transactional Consistency. First, existing caches do not ensure
transactional consistency with the rest of the system state. 	at is, there is no way
to ensure that accesses to the cache and the underlying storage layer return values
that re�ect a view of the entire system at a single point in time. While the backing
database goes to great length to ensure that all queries performed in a transaction
re�ect a consistent view of the database, i.e., it can ensure serializable isolation, these
consistency guarantees are violated when data is accessed from the cache..

	e anomalies caused by inconsistencies between cached objects can cause in-
correct information to be exposed to the user. Consider, for example, an eBay-like
auction site. Such an application might wish to cache basic metadata about an auc-
tion (its title and current price) separately from more detailed information like the
history of bidders. 	is division would be useful because the basic item metadata is
used to construct indexes and search results, whereas both objects are needed when a
user views the detailed auction information. Placing a new bid should update both
objects. If a subsequent request sees inconsistent versions of the objects, it might, for
example, display the latest auction price but not the updated bid history, leaving a
user confused about whether his bid has been registered.

Accordingly, memcached has seen use primarily for applications for which the
consequences of incorrect data are low (e.g., social networking websites). Applications
with stricter isolation requirements between transactions (e.g., online banking or
e-commerce) could also bene�t from application-level caching: it would improve
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their performance, reducing their operating costs and allowing them to scale further.
However, adding a cache would require them to sacri�ce the isolation guarantees
provided by the database, a price that many are unwilling to pay.

Even in cases where exposing inconsistent data to users is not a serious problem,
transaction support can still be useful to simplify application development. Seri-
alizable isolation between transactions allows developers to consider the behavior
of transactions in isolation, without worrying about the race conditions that can
occur between concurrent transactions. Compensating for a cache that violates these
guarantees requires complex application logic because the application must be able
to cope with temporarily-violated invariants. For example, transactions allow the
system to maintain referential integrity by removing an object and any references to
it atomically. With a cache that doesn’t support transactions, the application might
see (and attempt to follow) a reference to an object that has been deleted.

Challenge 2: Cache Management. 	e second challenge existing caches present
for application developers is that they must explicitly manage the cache. 	at is,
the application is responsible for assigning names to cached values, performing
lookups, and keeping the cache up to date. 	is explicit management places a
substantial burden on application developers, and introduces the potential for errors.
Indeed, as we discuss in Chapter 3, cache management has been a common source
of programming errors in applications that use memcached.

A particular challenge for applications is that they must explicitly invalidate data
in the cache when updating the backing storage. 	at is, the cache requires developers
to be able to identify every cached application computation whose value might have
been a�ected by a database modi�cation. 	is analysis is di�cult to do, particularly
in a complex and evolving application, because it requires global reasoning about the
entire application to determine which values may be cached, violating the principles
of modularity.
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1.3 contributions

	is thesis addresses both challenges described above in the context of a new trans-
actional, application-level cache which we call TxCache. TxCache aims to preserve
the �exibility of existing application-level caches while minimizing the challenges
it poses for application developers: adding caching to a new or existing application
should be as simple as indicating which data should be cached.

We describe how to build an application-level cache that guarantees transactional
consistency across the entire system. 	at is, within a transaction, all data seen by
the application re�ects a consistent snapshot of the database, regardless of whether
the data obtained from the cache or computed directly from database queries. 	is
preserves the isolation guarantees of the underlying storage layer. Typically, the
entire system can provide serializable isolation (assuming that the database itself
provides serializability). TxCache can also provide snapshot isolation, when used
with a database that provides this weaker isolation guarantee.

TxCache provides a consistency model where the system allows read-only trans-
actions to access stale – but still consistent – snapshots. Applications can indicate a
freshness requirement, specifying the age of stale data that they are willing to tolerate
We argue that this model matches well with the requirements of web applications,
and show that it improves cache utilization by allowing cache entries to remain useful
for a longer period.

Furthermore, we propose a simple programming model based on cacheable func-
tions. In this model, applications do not need to interact explicitly with the cache,
avoiding the challenges of cache management described above. Instead, developers
simply designate certain existing application functions as cacheable. A cache library
then handles inserting the result of the function into the cache and retrieving that
result the next time the function is called with the same arguments. Rather than
requiring applications to invalidate cache data, we integrate the database, cache, and
library to track data dependencies and automatically invalidate cache data.

Towards these ends, this thesis makes the following technical contributions:

• a protocol based on validity intervals for ensuring that transactions see only
consistent data, even though that data consists of cached objects that were
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computed at di�erent times

• techniques for modifying an existing multiversion database to generate validity
information which can be attached to cache objects

• a lazy timestamp selection algorithm that selects which snapshot to use for a
read-only transaction based on the application’s freshness requirement and the
availability of cached data.

• an automatic invalidation system, based on invalidation tags for tracking the
data dependencies of cache objects, and invalidation locks, which use a variant
on existing concurrency control mechanisms to detect data dependencies and
generate noti�cations when they are modi�ed.

We have implemented the TxCache system. We evaluated the e�ectiveness of its
programming model in two ways. We ported the RUBiS web application benchmark,
which emulates an auction site, to use TxCache. We also examined MediaWiki, a
popular web application that uses memcached, and analyzed some bugs related to
its use of caching. Both experiences suggest that our programming model makes it
easier to integrate caching into an existing application, compared to existing caches.

We evaluated cache performance using the RUBiS benchmark [7]. Compared
to a system without caching, our cache improved peak system throughput by 1.5 –
5.2×, depending on the system con�guration and cache size. Moreover, we show
that the system performance and cache hit rate is only slightly (less than �ve percent)
below that of a non-transactional cache, showing that consistency does not have to
come at the expense of performance.

1.4 outline

	is thesis is organized as follows:
We begin with a high-level overview of the system architecture and how it in-

tegrates with existing components in a web application, and state our assumptions
(Chapter 2). We then describe TxCache’s cacheable function programming model,
explain how to implement a simpli�ed version of the system that provides this
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programming model but does not support transactions, and discuss how the pro-
gramming model can avoid common sources of caching-related application bugs
(Chapter 3).

We then turn to the question of how to provide support for whole-system
transactional consistency. Chapter 4 describes the semantics that the system provides
for transactions. Chapter 5 explains how the system ensures that all data accessed by
the application within a transaction re�ects a consistent view of the storage state; it
introduces the concept of validity intervals and explains how the cache and library
use them. 	e consistency protocol requires some support from the storage layer;
Chapter 6 explains how to provide this support. We describe both how to design
a new storage system (here, a simple block store) to provide the necessary support,
and how to retro�t it into an existing relational database. Chapter 7 discusses how
the system tracks data dependencies and uses invalidations to notify the cache of
database changes that a�ect cached objects.

Chapter 8 evaluates the performance of TxCache using the RUBiS benchmark.
Chapter 9 surveys the related work, and Chapter 10 concludes.

Appendix A describes an extension to the system that allows read/write trans-
actions to safely use cached data. Appendix B provides an explanation about how
TxCache’s consistent reads property allows the system to ensure either serializability
or snapshot isolation.
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2
A R C H I T E C T U R E A N D M O D E L

2.1 system architecture

Our system is designed to be used in an environment like the one depicted in
Figure 2-1. We assume an application that consists of one or more application servers
that interact with a storage system, typically a database server. Clients (i.e., users)
interact with the system by sending requests to application servers; they do not
interact directly with the cache or storage. 	e application servers could be web
servers running embedded scripts (e.g., Apache with mod_php or mod_perl), or
dedicated application servers that receive requests from front-end web servers and
implement the business logic (as with with Sun’s Enterprise Java Beans); both are
common deployment options.

	e storage layer is typically a relational database, though other types of storage
like key-value stores are possible. We assume that the application uses this for storing
all of its persistent state. In order for our system to provide transactional guarantees,
the storage system itself must of course provide transaction support. We require that
it provides either serializable isolation of transactions, or snapshot isolation [10].
Databases that provide serializable isolation must do so using a concurrency control
mechanism that ensures that the commit order of transactions matches a serial order;
most common concurrency control strategies, including strict two-phase locking [38]
and optimistic concurrency control [55], have this property. Appendix B explains
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Figure 2-1: System architecture
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the rationale for this requirement, and describes how to extend the system to support
databases where it does not hold.

TxCache’s consistency protocol is based on versioning, and requires some ad-
ditional support from the storage layer, imposing some additional requirements. It
must expose the ability to run read-only transactions on a speci�c recent snapshot,
and must report certain validity information. 	ese requirements are unique to
our system; we specify them precisely in Section 5.3 and show how to modify an
existing multiversion concurrency control system¹ to support them in Chapter 6.
	e requirements are not onerous; we added this support to the PostgreSQL DBMS
with less than 2000 lines of modi�cations.

Like the typical application-level cache architecture shown in Figure 1-1, Figure 2-
1 shows that our cache is not a part of the database, nor is it an intermediary between
the cache and database. However, unlike in previous systems, applications do not
interact with the cache explicitly. TxCache introduces a new component: a cache
library that runs on each application server and mediates all accesses to the cache. 	e
library implements TxCache’s cacheable-function programming model eliminating
the need for the application to access the cache directly and allowing application
code to remain largely oblivious to the cache. It is also responsible for part of the
consistency protocol, ensuring that the application always sees a transactionally-
consistent view of the storage.

	e cache is partitioned across a set of cache nodes, each running an instance of
our cache server. 	ese nodes may be run on dedicated hardware, or they may share
resources with other servers. For example, the cache servers may run on the same
machines as the application servers, in order to take advantage of memory on these
servers that would otherwise go unused.

¹	ough not a strict requirement, these modi�cations are only likely to be practical for databases
that use multiversion concurrency control. 	is requirement is not particularly restrictive: multi-
version concurrency control is a common isolation mechanism implemented by most of today’s
major database management systems, and is popular for web applications because it o�ers higher
performance for read-only operations.
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2.2 assumptions

We assume that all application servers and all cache nodes know the membership of
the system, i.e., the IP addresses of every cache server. In particular, we assume that
they agree on the same view of the system membership. We developed a membership
service [31] that provides consistent membership views; other group communication
services [4, 14, 86] are also options. We expect the membership to change infre-
quently, so the cost of maintaining these membership views is negligible. (In smaller
deployments, it may even be practical for an administrator to maintain the system
membership con�guration by hand.)

Cache nodes may fail; we assume that they fail by crashing and lose their state.
We discuss how the system responds to failures of cache nodes in Section 3.3.1. Fault
tolerance of the storage layer is beyond the scope of this work; we do not discuss
how to recover from failures of the storage system beyond simply restarting the cache
after a database failure. Application servers may also fail by crashing, but as this has
no real impact on the system design we do not discuss it.

All application servers, cache nodes, and the storage layer are fully trusted. We
also trust the network that connects them to not modify or corrupt requests. We
assume that only trusted application servers are able to send requests to the cache
nodes and storage system; this could be enforced using �rewall rules or access control
policy.

One of our other assumptions is that the application servers and cache nodes
within a deployment are on the same local network, e.g., within the same data-
center. 	is is not a requirement for correctness of the protocol, but a low latency
interconnect is important for performance.
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3
C A C H E A B L E F U N C T I O N S :

A S I M P L E P R O G R A M M I N G M O D E L

	ere are only two hard problems in Computer Science:
cache invalidation and naming things.

— Phil Karlton

	is thesis aims to improve the usability of application-level caching in two ways.
	e �rst, which is addressed in this chapter, is to introduce a new programming
model that makes it easy to seamlessly integrate caching into existing systems and
frees application developers from the responsibilities of cache management. (	e
second, providing support for transactions, is the subject of Chapters 4–7.)

	e goal of our programming model is to make the process of adding caching to
an existing system as simple as deciding what should be cached. In our programming
model, developers simply designate certain functions as cacheable functions, which
automatically and transparently cache their results. 	ese functions behave identically
regardless of whether the cache is used, so making a function cacheable is a purely local
change: callers of these functions do not need to be modi�ed. Unlike existing systems,
our programming model does not require applications to explicitly manage the cache.
Applications are not responsible for naming and locating values in the cache, or for
invalidating cached values when the database is changed. As we demonstrate, these
tasks are challenging – and a frequent source of bugs – because they require global
reasoning about the application.
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	is chapter presents the basic programming model, ignoring issues related to
transaction support and concurrency control. Section 3.1 explains the interface
presented to application developers. Section 3.2 examines how this interface prevents
common problems that currently plague developers who use application-level caching.
Section 3.3 then describes how to build a cache that implements this model.

3.1 the cacheable function model

	e TxCache programming model is organized around cacheable functions. 	ese
are actual functions in the program’s code, annotated to indicate that their results
can be cached. Cacheable functions are essentially memoized [67]: TxCache’s library
transforms them so that, when called, they �rst check whether the cache contains the
results of a previous call to the same function. If so, that result is returned directly,
bypassing the need to execute the function. If not, the function is executed, and its
result stored in the cache for future use.

Cacheable functions can make requests to the system’s underlying storage layer,
e.g., they can perform database queries. Cacheable functions can also be nested, i.e.,
they can make calls to other cacheable functions. Nested cacheable functions allow
applications to cache data at di�erent granularities, which is an important bene�t of
application-level caching. For example, a web application might choose to make the
outermost function that generates a webpage cacheable, allowing the entire page to
be cached, but can also cache the functions generating individual elements of that
page, which might also be used on di�erent pages.

3.1.1 restrictions on cacheable functions

	ere are some restrictions on which functions can be cacheable. To be suitable for
caching, functions must be pure, i.e., they must be deterministic, not have side e�ects,
and depend only on their arguments and the storage layer state. (	is de�nition of
“pure” di�ers slightly from the classic one, in that we allow the function to depend
on the storage state, treating it as an implicit argument to the function.)

	ese requirements are straightforward and correspond to an intuitive notion of
what types of computations ought to be cached. It would not make sense to cache
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• make-cacheable(fn)→ cached-fn : Makes a function cacheable. cached-fn is a
new function that �rst checks the cache for the result of another call with the
same arguments. If not found, it executes fn and stores its result in the cache.

Figure 3-1: TxCache API for designating cacheable functions

a function with side-e�ects, e.g., one that modi�es a �le, as this side-e�ect would
then take place only on a cache miss. Similarly, it would not make sense to cache a
function that is nondeterministic, such as one that returns a random number or the
current time.

Another aspect of this requirement is that if a cacheable function invokes storage
layer operations, they must also be deterministic. 	is is not always the case for SQL
database queries; Vandiver discusses some techniques for �nding and eliminating
nondeterminism in SQL queries in the context of a database replication system [103,
104].

TxCache currently relies upon programmers to ensure that they only cache
suitable functions. However, this requirement could be enforced using static anal-
ysis to identify pure functions [91]. It could also be enforced by using dynamic
instrumentation to detect and refuse to cache functions that modify state or invoke
non-deterministic functions [41]. As a sanity check, our implementation can detect
certain non-deterministic functions at runtime and issue a warning; this identi�ed a
bug in the RUBiS benchmark we discuss in Section 8.2, but the check is not intended
as a comprehensive solution.

3.1.2 making functions cacheable

Figure 3-1 shows the API that TxCache presents to applications. It is presented here
in an abstract form using higher-order procedures; this is similar to the API that we
provide in Python. In other languages, the details may di�er slightly; for example,
our PHP implementation takes slightly di�erent form because PHP does not support
higher-order procedures.

As the �gure shows, the API is minimal: it consists of a single operation, make-
cacheable. (	is is only a slight simpli�cation; the transactional version of the
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int myFunction(int arg1, string arg2) {
〈〈 computation & DB queries 〉〉

return 〈〈 result expression 〉〉
}

make-cacheable−−−−−−−−−−−→

int myFunction(int arg1, string arg2) {
key = concat("myFunction", arg1, arg2)
result = cache[key]
if (result != null) {

return result
} else {

// cache miss!
〈〈 computation & DB queries 〉〉
result = 〈〈 result expression 〉〉

cache[key] = result
return result

}
}

Figure 3-2: 	e make-cacheable operation transforms a normal function into a
cached function

system adds a few mostly-standard transaction management functions like commit
and abort, but no more.) 	e make-cacheable operation transforms a function
into a cacheable function, as shown in Figure 3-2.

Assuming that the functions provided to make-cacheable are indeed pure
functions, the resulting cacheable functions behave identically to the original func-
tions. From the perspective of a user of the function, the only di�erence between
the case where the result is available in the cache and the case where it has to be
computed anew is the speed of execution. 	is unchanged behavior is important
for modular software development: marking a function as cacheable doesn’t require
making changes to other parts of the system that depend on it.

3.1.3 automatic cache management

What is mainly noteworthy about the API in Figure 3-1 is what it does not include.
Application developers are only required to indicate what functions they would
like to cache. Everything else is handled by the TxCache system; applications are
not required to access the cache directly. As a result, applications are not required
to track which data is in the cache, where it is stored, or whether it is up to date.
In particular, applications are not required to assign names to cached objects, and
are not required to notify the cache when cached values change. TxCache instead
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provides an automatic invalidation mechanism, described in Chapter 7, which tracks
data dependencies and noti�es the cache when the underlying data in the database
changes.

3.2 discussion

TxCache’s cacheable-function programming model o�ers signi�cant usability advan-
tages over standard application-level caches. 	e standard interfaces for these caches
is a hash table interface: applications get and put arbitrary objects in the cache,
identi�ed by application-de�ned keys. 	is interface is used by many well-known
application-level caches, including memcached [65], Redis [84], JBoss Cache [49],
AppFabric [92], and others.

	e hash table interface provided by other caches presents two speci�c challenges
to application developers: they are responsible for naming and locating items in the
cache, and they are responsible for invalidating cached objects when an update to
the database a�ects them. Both are challenging in large systems and are a common
source of caching errors. In TxCache’s programming model, these are no longer the
responsibility of the application, eliminating this source of bugs.

We examine the problems with naming and invalidations in existing caches,
and how TxCache avoids them, in the context of the MediaWiki application [62].
MediaWiki is an application for serving collaboratively-editable “wiki” sites. It is used
to power the Wikipedia encyclopedia, one of today’s ten most popular websites, as
well as several other high-tra�c websites. To support these heavy workloads – while
providing a rich set of features and dynamic content – MediaWiki uses memcached
extensively for caching. Among the objects it caches are the rendered text of articles,
the parse trees from which they are generated, metadata about articles and users,
and translations of user interface messages. Our analysis of MediaWiki consisted
of examining memcached-related bug reports from the MediaWiki bug database,
and adapting MediaWiki to use TxCache to cache some of the computations that it
currently uses memcached for.
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3.2.1 naming

In a key-value cache interface like the one memcached provides, applications need to
explicitly store and look up data in the cache. To do so, application developers must
identify the data they wish to access using a cache key. 	ese cache keys must uniquely
identify objects in the cache: the same key must be used everywhere to refer to a single
object, and no two distinct objects can share a cache key. 	is requirement seems
obvious, but this is nevertheless a source of errors because selecting keys requires
reasoning about the entire application and how the application might evolve.

Examining MediaWiki bug reports, we found that several memcached-related
MediaWiki bugs stemmed from choosing insu�ciently descriptive keys, causing
two di�erent objects to overwrite each other [63]. One representative example
(MediaWiki bug #7541), concerned caching of a user’s watchlist, which displays
recent changes to pages the user has �agged as being of interest. Each user’s watchlist
was cached using a cache key derived from the user’s ID. However, MediaWiki also
allows the user to specify the number of changes to display in the watchlist, and this
was not re�ected in the cache key. As a result, the same results were returned even
when the user requested to display a di�erent number of days worth of changes.

It is easy to see how these types of errors might arise in a large, complex application:
the code that implements this feature underwent numerous changes in the years
since caching was added to it. Any modi�cations that parameterize the output must
also modify the cache key, but this requirement is easy to overlook. In particular,
the changes to this module were made by several di�erent developers, all of whom
would need to be aware of how caching is being used to avoid errors.

An error like this could not occur with TxCache. TxCache uses cacheable func-
tions as its unit of caching, and uses the function and its arguments to identify the
cached value. Because cacheable functions are pure, the arguments uniquely identify
the result. Adding a new customization to the watchlist page would require adding
an additional argument to the cacheable function, and that argument would be used
to distinguish between cached values.
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3.2.2 invalidations

An even more challenging problem with existing caches is that they require applica-
tions to explicitly update or invalidate cached results when modifying the database.
	ese explicit invalidations require global reasoning about the application, violating
modularity. To add caching for an object, an application developer must be able
to identify every place in the application that might change the value of the object,
and add an invalidation. Similarly, an application developer who adds code that
modi�es data in the database must know which cached values might depend on it,
and invalidate them. 	e cached values and the updates that must invalidate them
may be located in di�erent modules and may be written by di�erent developers,
making it di�cult to keep track of when invalidations are necessary.

As a result, applications that use memcached have cache invalidation code scat-
tered through many functions in many modules. Developers typically rely on ad hoc
coordination methods: MediaWiki maintains a text �le (memcached.txt) that
lists the various objects stored in the cache, the cache keys used to identify them,
and the situations in which they need to be invalidated. But this hardly guarantees
that the resulting code will be correct; indeed, the text �le itself contains a disclaimer
that it is “incomplete, out of date”.

Several MediaWiki bugs resulted from missing or incorrect invalidations [64].
Consider, for example, the process of editing an article on Wikipedia: what cached
objects must be invalidated once the update is committed to the database? Some
are easy to identify: the cached objects that contain the article text are clearly no
longer valid. However, other objects have less obvious dependencies on this change,
and must also be invalidated. One example is the user object corresponding to the
user who made the change, which includes various metadata including the user’s
edit count (which is used to restrict access to certain features to experienced users
only). Once MediaWiki began storing each user’s edit count in their cached user
object, it became necessary to invalidate this object after an edit. 	is was initially
forgotten (MediaWiki bug #8391), indicating that identifying all cached objects
needing invalidation is not straightforward, especially in applications so complex
that no single developer is aware of the whole of the application.

Such an error could not happen with TxCache, as it does not require applications
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to explicitly invalidate cached objects. Rather, it incorporates a dependency tracking
mechanism which would have identi�ed that editing a page modi�ed some data that
the user object depended on, and invalidated that object.

3.2.3 limitations

By organizing cached data around cacheable functions rather than providing a hash
table interface, TxCache imposes more structure on cached data. 	is structure
allows it to simplify cache management by avoiding naming and invalidation issues.
However, it does provide a small decrease in �exibility: there are some use cases that
can be supported by memcached and other caches, but not by TxCache.

Soft State

TxCache makes the assumption that all cached objects are derived from persistent
state in the database (or other storage system). 	is corresponds to the most common
use case of application-level caching. However, some users of memcached also use
it as a simple storage system for soft state that is never stored in the backing store.
For example, it is sometimes used to track the number of requests from a particular
IP address to implement rate limiting as protection against denial of service attacks.
	is information is needed only in the short term, and does not require durability
or consistency, so storing it in the cache is a viable option.

We do not attempt to support this use case (short-term unreliable storage);
we target only caching data derived from a persistent backing store. Of course,
applications can still use memcached or another existing cache for this purpose.

Invalidations vs. Updates

TxCache includes an automatic invalidation system that noti�es the cache when a
cached object is no longer valid because of a database change. 	e next time the
application requests the invalidated object, it must recompute it. In most existing
systems, applications are responsible for keeping the cache up to date. When the
application makes a change to the database, it must identify the cached objects that
are a�ected, which imposes a signi�cant burden on the programmer. However, once
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they have done so, they can choose either to invalidate these objects, or update them
in place: they can determine the new value and replace the cache entry directly,
making it immediately accessible for future lookups. TxCache does not support this
mode of operation.

Gupta showed that using in-place updates instead of invalidations can improve
the performance of a memcached-using web application by 0–25% [44, 45]. 	is
result is in the context of an object-relational mapping system that only caches
objects corresponding to �xed set of well-de�ned query patterns. In such a model, it
is immediately apparent which changes need to be made to update cached objects.
In contrast, TxCache’s programming model supports caching of functions including
arbitrary computation, so updating a cached object requires recomputing it. In
particular, TxCache supports caching complex objects (such as the entire content of
web pages that involve many database queries) which would be considerably more
expensive to recompute, making the bene�t of updates over invalidations signi�cantly
smaller.

3.3 implementing the programming model

	e TxCache system implements the programming model described above. 	is
section describes a basic implementation of the system that does not provide support
for transactions. In subsequent chapters, we extend this system with support for
transactions (Chapters 4–6) and for an automatic invalidation system (Chapter 7).

Recall the system architecture from Figure 2-1. End users interact with application
servers (i.e., web servers) which process their requests. In doing so, they interact with
a storage layer (e.g., a database). TxCache introduces two new components: a cache,
comprised of multiple cache servers, and a library that runs on each application
server and translates cacheable function calls to cache accesses.

3.3.1 cache servers

TxCache stores the results of application computations in its cache, which is dis-
tributed across a set of cache servers. 	e cache presents a hash table interface: it maps
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keys to associated values. Only the TxCache library uses this interface; applications
do not interact with the cache directly.

	e cache is implemented as a simple distributed hash table. It partitions data by
key among multiple hosts using consistent hashing [52]. We assume that a member-
ship service provides every node in the system with a consistent view of the system
membership (we discuss how membership changes are handled later). 	erefore,
any participant can immediately determine which cache node is responsible for
storing a particular hash key. 	e cache nodes, therefore, can operate completely
independently; they do not need to communicate with each other. Each cache node
simply accepts lookup and store requests for the keys it is responsible for, using
a simple RPC protocol.

	e interface and partitioning of our cache are similar to peer-to-peer distributed
hash tables, such as Chord [96], Pastry [89], and many others. However, our system
lacks many of their more demanding requirements, and so avoids most of their
complexity. In particular, multi-hop routing is unnecessary at the scale of perhaps
hundreds of nodes in a data center; at this scale, it is feasible for each node to maintain
the complete system membership.

Each cache node’s data is stored entirely in memory, ensuring that it can always
give an immediate response (without blocking on disk I/O, for example). 	is
allows the cache server to be implemented as a single-threaded application which
processes one request at a time, avoiding the need for locking within the cache sever.
Multiprocessor systems can simply run multiple independent instances of the cache
server, relying on consistent hashing to achieve load balancing among them.

	e cache stores data in a hash table indexed by key. When a cache node runs out
of memory, it evicts old cached values to free up space for new ones. Cache entries
are never pinned and can always be discarded; if one is later needed, it is simply a
cache miss. 	e cache evicts entries using a least-recently-used replacement policy.

Recon�guration: Cache Server Failures and Membership Changes

	e set of active cache servers can change over time. Cache nodes may fail, or may
be removed from the system. New nodes can be added to the system, perhaps to
increase the overall capacity of the cache. For the most part, the system handles

40



these membership changes acceptably without any special protocols: we do not use
replication to ensure availability. Because the cache can evict entries arbitrarily, the
system must already be prepared to handle the absence of data in the cache. If a
cache node fails, attempts to access it can simply be treated as cache misses until the
node is repaired or removed from the membership list. Similarly, when a new node
is added, it does not have any state; it simply indicates a cache miss on all requests
until it receives the appropriate state.

As an optimization, newly joining cache nodes can transfer state from the node
that previously stored the cached values it will be responsible for. Furthermore,
replication can optionally be integrated into the system if losing a cache node’s worth
of data during a failure is a serious performance concern. However, replication has
a clear downside: it reduces the e�ective storage capacity of the cache (or increases
the cost of the cache hardware) by a factor of at least two. A useful property for
implementing either a state transfer or replication protocol is that the TxCache server
(though not the simpli�ed version shown here) stores versioned data. Because each
version is immutable, it is possible to use DHT-like synchronization protocols [23,30,
95] rather than needing more expensive state machine replication protocols [70, 93]
to ensure consistency.

3.3.2 txcache library

	e TxCache library runs on each application server in the system. It is responsible
for implementing the cacheable-function programming model: as the application
invokes cacheable functions, the library checks for their values in the cache, and
stores computed values in the cache as necessary.

	e library’s make-cacheable function takes a function as input and produces
a wrapper function. 	is wrapper function is a memoized version of the original
function. Figure 3-3 shows what happens when the application invokes one of these
wrapper functions. 	e function �rst constructs a cache key from the function name
and the arguments to the function, serializing them in the appropriate (language-
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speci�c) way.¹ 	e library then hashes the cache key to determine the cache server
responsible for storing it (using consistent hashing), and sends a lookup request.

If the cache server has the appropriate value available, it returns it to the TxCache
library. 	e TxCache library then returns that directly to the application, avoiding
the need to execute the function.

If the TxCache library is unable to obtain the cached result from the cache server,
it must recompute it. 	is might happen if the result has been invalidated, evicted
from the cache, or was never computed, or if the cache node is inaccessible. 	e
TxCache library then makes an upcall to the application, requesting that it invoke
the cacheable function’s implementation (the function originally provided to make-
cacheable). As that function executes, it may make queries to the storage layer;
the TxCache library monitors those queries to track dependencies for invalidation
purposes, as we describe in Chapter 7. When the execution of the function completes,
it returns the result to the wrapper function created by the TxCache library. Before
passing the return value back to the application, the TxCache library’s wrapper
function serializes the value and sends a store request to the appropriate cache
server, inserting the value into the cache so that it can be used for later calls.

¹Using only the function name and arguments as the cache key assumes that the function will
not change. In environments with a dynamic code base, one might want to also incorporate a version
number or a hash of the code itself.
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1 application calls wrapper function
2 TxCache library sends lookup request to cache
3 cache returns value or indicates cache miss

(cache miss only) 4 TxCache library makes upcall to application’s
implementation function

(cache miss only) 5 application executes function, making
queries to database as necessary

(cache miss only) 6 application returns result to TxCache library
(cache miss only) 7 TxCache library adds value to cache

8 TxCache library returns value to caller

Figure 3-3: Control �ow during a call to a cacheable function
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4
C O N S I S T E N C Y M O D E L

TxCache is designed to make application-level caching easy to integrate with existing
systems. 	e cacheable function model described in the previous chapter supports
this goal by making caching transparent: designating a function as cacheable should
not produce any visible di�erence to callers of that function. However, there is one
way in which the cache we have described so far violates transparency: like other
existing caches, it does not provide support for transactions. Without the cache, the
application accesses the storage layer directly and can rely on it to ensure isolation
between transactions (e.g., serializability). If the application uses data from the cache,
however, there is no guarantee that cached values will be consistent with each other
or with data from the database.

	e second goal of this work, therefore, is to provide transaction support in
an application-level cache. Our model of consistency ensures isolation between
transactions but explicitly trades o� freshness, allowing applications to see slightly
stale states of data in the cache. Nevertheless, the data is still consistent: the whole
system can guarantee either serializability or snapshot isolation, depending on which
the storage layer provides. 	is chapter de�nes these properties and argues that the
relaxed freshness guarantee is appropriate for applications.
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4.1 transactional consistency

TxCache provides transactional consistency for applications that use the cache. Our
goal here is to preserve the isolation guarantees of the underlying storage layer. Most
existing caches fall short at this goal: while they are typically used with databases
capable of ensuring strong isolation between transactions (e.g., serializability or
snapshot isolation), the caches do not ensure consistency between data accessed
from the cache and data accessed from the database. In contrast, TxCache ensures
system-wide isolation guarantees.

	e strongest guarantee the system can provide is serializability:

• serializable isolation: the execution of concurrent transactions produces the
same e�ect as an execution where transactions executed sequentially in some
order

	is property is the standard correctness criterion for concurrent execution of trans-
actions. Most databases provide serializable isolation as an option (as required by
the ANSI SQL standard [3]). When used with such a database, TxCache provides
whole-system serializability: it ensures serializable isolation of transactions regardless
of whether the data they access comes from the cache or directly from the database.

We focus on serializable isolation because it is the strongest standard isolation
level. Its strong semantics �t well with our goals because they simplify application
development: developers can be certain that if their transactions do the right thing
when run alone, they will continue to do so in any mix of concurrent transactions.
TxCache ensures that this continues to be true even when the application accesses
cached data.

TxCache also supports storage systems that do not provide serializability, but
instead o�er the weaker guarantee of snapshot isolation:

• snapshot isolation: each transaction reads data from a snapshot of the com-
mitted data as of the time the transaction started, and concurrent transactions
are prevented from modifying the same data object

Snapshot isolation is known to be a weaker property than serializability, allowing race
conditions between concurrent transactions to cause anomalies that would not occur
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in a serial execution [10]. Nevertheless, it is a popular option for storage systems to
provide (both relational databases and other systems [73]) because it allows more
concurrency than serializability, while still preventing many of the most common
anomalies. When used with a database that provides snapshot isolation, TxCache
provides snapshot isolation for the whole system: it ensures that every transaction
sees a consistent snapshot of the data regardless of whether it comes from the cache
or the database.

Snapshot isolation the weakest isolation level that our system supports. Even
weaker isolation levels are also common – for example, most databases provide a read
committed mode that ensures only that transactions do not see uncommitted
data – but it is not clear that it would be reasonable to use these with our system. In
these cases, our cache would provide a stronger isolation guarantee than the database,
which is unlikely to be useful.

4.2 relaxing freshness

Our system guarantees transactional consistency (either serializability or snapshot
isolation) but does not attempt to guarantee freshness: the data in the cache may not
re�ect the latest data in the storage layer. TxCache relaxes this property in order to
provide better performance for applications that can tolerate some stale data.

Typical caches strive to keep the data in the cache as up to date as possible with
respect to the backing store. Despite this, keeping the cache completely up to date is
not practical. Most caches return slightly stale data simply because modi�ed data
does not reach the cache immediately. To ensure that the cache always re�ects the
latest changes made to its backing store would require using locking and an atomic
commitment protocol between the cache and storage (e.g., two-phase commit).
	is expensive protocol would negate much of the performance bene�t of the
cache. Furthermore, even with such an implementation, clients still do not have any
guarantee that the values returned from the cache are up to date by the time they are
received by the client.

Trading o� freshness for consistency is a common strategy in concurrency control.
For example, in snapshot isolation, all data read by a transaction re�ects a snapshot
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of the database taken at the time the snapshot began [10]. 	is allows read-only
transactions to run without blocking read/write transactions, at the expense of
freshness: the read-only transaction might see older values of objects that were
modi�ed while it ran.

Freshness is explicitly not a goal of our system. Instead, we allow read-only
transactions to see somewhat stale, but still consistent views. 	at is, read-only
transactions e�ectively read data from a snapshot taken up to t seconds before the
transaction started. (Read/write transactions, on the other hand, always see the
latest data, for reasons we discuss in Section 4.3.) 	is feature is motivated by the
observation that many applications can tolerate a certain amount of staleness [53],
and using stale cached data can improve the cache’s hit rate [61]. 	e staleness limit
t can be speci�ed by the application, re�ecting that di�erent applications tolerate
di�erent levels of stale data. It can even be speci�ed on a per-transaction basis, because
di�erent operations may have signi�cantly di�erent requirements.

	is means that there is a total order of the states visible to each read-only
transaction, but that this order need not match the order in which transactions start
or commit. 	at is, the system can provide serializability of these transactions, but
does not provide linearizability [47], a stronger condition that requires that operations
take e�ect at some point between their invocation and response. (	is comparison is
somewhat imprecise, in that linearizability is de�ned in terms of individual operations,
whereas our guarantees are in terms of multi-operation transactions.)

	e increased �exibility of allowing transactions to see older states improves
the cache hit rate by allowing access to cached data even when it is not the most
current version available. If multiple transactions access the same data within a short
interval, they can use the same cached value, even if that value was updated in the
meantime. As our experiments in Section 8.5 show, this is an important bene�t for
frequently-updated data.

4.2.1 dealing with staleness: avoiding anomalies

Because TxCache allows read-only transactions to run in the past, where they may
see stale data, one potential concern is that using stale data might introduce new
anomalies, or be incompatible with some applications. We argue here that these
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consistency semantics do in fact align well with application requirements and user
expectations, as long as some restrictions are imposed on how far in the past transac-
tions can run. TxCache makes it possible for applications to express these restrictions
as freshness requirements.

	e main freshness requirement applications typically have is causality: after a user
has seen some data from a particular time, later actions on behalf of that user should
not see older data. 	is requirement can easily be enforced: the application keeps track
of the latest timestamp the user has seen, and speci�es that TxCache should require
a read-only transaction to run no earlier than that timestamp. TxCache leaves it to
the application to track this and specify the appropriate freshness constraint, rather
than attempting to implement causality tracking in the TxCache library, because
causality requirements are application-speci�c. For example, a web service might
consist of multiple application servers, each processing requests from many users;
each user’s requests should see a later state than that user’s previous requests, even
if they were processed by a di�erent server. Furthermore, the data seen by one user
should not impose restrictions on a transaction run by a di�erent user that happens
to execute on the same server. In this case, the application can store the timestamp in
each user’s per-session state, e.g., by storing it in a HTTP cookie. More generally, in
distributed applications where multiple application servers interact with each other,
causal interactions can be tracked using Lamport clocks [57], as used in systems like
	or [60] and ISIS [15].

	e reason that it is safe to run transactions in the past is that, within a short time
period, applications must already be tolerant of transactions being reordered. If, for
example, a read-write transaction W and a read-only transaction R are sent at nearly
the same time, the database might process them in either order, and so W ’s change
might or might not be visible to R. Either result must be acceptable to the client
executing R, unless it knows that W took place from some external source. In other
words, unless a causal dependency between the two clients exists, their transactions
can be considered concurrent (in the sense of Lamport’s happens-before relation [57])
and hence either ordering is acceptable.

	is type of consistency also �ts well with the model of a web service. Users
expect that the results they see re�ect a recent, consistent state of the system, but
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there is no guarantee that it is the latest state. By the time the result is returned to the
user, a concurrent update might have made it stale. Indeed, if executed on a snapshot
isolation database, there is no guarantee that the results are even current at the time
the database returns an answer; new committed results may have arrived during
query execution. If a transparent web cache is present, these e�ects are exacerbated.
Even without a cache, to ensure that a result remains correct until the user acts on
it (e.g., an airline ticket reservation is held until paid for), some kind of lease or
long-duration lock is necessary; TxCache does not interfere with these techniques,
because it does not a�ect read-write transactions.

Of course, causal interactions external to the system cannot be tracked. For
example, nothing can be done about a user who sees a result on one computer, then
moves to another computer and loads the same page. To limit the impact of this
problem, applications can request a minimum freshness, e.g., they might never be
willing to accept data more than 30 seconds old. 	e value of this minimum freshness
may vary dramatically depending on application requirements; some applications
are able to tolerate signi�cantly stale data.

4.3 read/write transactions

Our consistency model allows read-only transactions to see stale data. We do not,
however, allow read/write transactions to see stale data. We forbid this because it
can allow certain non-serializable anomalies that would make it more di�cult for
application developers to ensure correct behavior. An application might read some
cached objects, seeing an earlier state of the system, and use these to make an update.
Consider the example of an auction website, which we discuss in Chapter 8. Here, a
small amount of staleness is useful for read-only queries: it is acceptable if the list
of auctions is a few seconds out of date. But it is important to use the latest data
for updates: if a user requests to place a bid, and the system sees stale data when
checking if the bid is higher than the previous one, it might miss an even higher bid
placed in the interim.

	ese types of concurrency bugs are similar to the anomalies that can occur
when using a snapshot isolation database [10] – but worse, because our relaxed-
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freshness model would allow applications to see a snapshot of the system from before
the transaction start. (	is model has been formalized as Generalized Snapshot
Isolation [36].) Our system could easily be adapted to work in this way, but we prefer
the simpler approach of not allowing read/write transactions to see stale data, on
usability grounds. It has been our experience that even the anomalies resulting from
snapshot isolation are poorly understood by developers, and the analysis required
to detect these anomalies is di�cult to do [80]. 	e fact that snapshot isolation
anomalies have been discovered in deployed systems supports this conclusion [51].

A simple way to ensure that read/write transactions do not see stale data is to
prevent them from using the cache entirely. In our implementation, we use the cache
only for read-only transactions and bypass it for read/write transactions; read/write
transactions access the storage layer directly, using its normal concurrency control
mechanisms. Our experiments (Chapter 8) show that this approach is e�ective for
workloads with a high fraction of read-only transactions, a common pattern for many
web applications.

We describe a more sophisticated approach in Appendix A that allows read/write
transactions to use cached objects. It uses an approach based on optimistic concur-
rency: when executing a read/write transaction, clients only access the latest versions
of data from the cache, and validate on commit that the data they read remains
current. An additional complication, which we also address in Appendix A, is that
read/write transactions need to be able to see the e�ects of modi�cations made earlier
in the transaction, but these e�ects should not become visible to other concurrent
transactions until the transaction commits.

4.4 transactional cache api

	e TxCache API is summarized in Figure 4-1. 	e make-cacheable function
remains as described in Section 3.1. Now, the API also allows programmers to
group operations into transactions. TxCache requires applications to specify whether
their transactions are read-only or read/write by using either the begin-ro or
begin-rw function. Transactions are ended by calling commit or abort. Within
a transaction block, TxCache guarantees that all data seen by the application is
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• begin-ro(freshness-requirement) : Begin a read-only transaction. 	e transaction
sees a consistent view of the system state that satis�es the freshness requirement.

• begin-rw() : Begin a read/write transaction.

• commit()→ timestamp : Commit a transaction and return the timestamp at
which it ran

• abort() : Abort a transaction

• make-cacheable(fn)→ cached-fn : Makes a function cacheable. cached-fn is a
new function that �rst checks the cache for the result of another call with the
same arguments. If not found, it executes fn and stores its result in the cache.

Figure 4-1: TxCache transactional API

consistent with a single state of the storage layer.
	e begin-ro operation takes the application’s freshness requirement as an

argument. 	is requirement can be expressed either in real-time terms (e.g., the
application is only willing to accept states from within the last 30 seconds) or logical
terms (e.g., the application must see a state at least as recent as a particular transaction).
	e latter option is intended to support causal consistency requirements such as
ensuring that each user sees the e�ects of their latest change. Here, transactions are
identi�ed by timestamps, as discussed in Chapter 5. 	e commit operation returns
the timestamp at which a transaction ran; the application can subsequently use that
timestamp as an argument to begin-ro to start a new transaction that must see
the e�ects of the previous one.
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5
C O N S I S T E N C Y P R O T O C O L

	is chapter describes the protocol that our system uses to ensure transactional
consistency. 	e protocol is based on a notion of validity intervals, which indicate
the range of times at which a version of an object was current. 	ese re�ect the fact
that cached objects are valid not just at the instant they were computed but at a
range of times, allowing the system to combine cached objects that were computed
at di�erent times as long as they are consistent with each other.

To ensure transactional consistency when using cached objects, TxCache uses a
versioned cache indexed by validity interval. We ensure that the storage layer can
compute an associated validity interval for each query result, describing the range of
time over which its result was valid. 	e TxCache library tracks the queries that a
cached value depends on, and uses them to tag the cache entry with a validity interval.
	en, the library provides consistency by ensuring that, within each transaction, it
only retrieves values from the cache and database that were valid at the same time.

5.1 validity intervals

	e basic observation that makes this protocol possible is that every object is valid
not just at a single point in time – the time at which it was generated – but at a
range of times, representing the time range during which it was the most recent
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B

timestamp
Transaction

10
INSERT A

11
INSERT B

16
DELETE B

13
UPDATE B

14
DELETE A

Figure 5-1: Example of validity intervals for two objects

version. 	is observation makes it possible to combine two cached objects that were
computed at di�erent times as long as the data that they rely on has not changed.

We consider each read/write transaction to have a timestamp that re�ects the
ordering in which that transaction’s changes became visible to other transactions.
	ese timestamps must have the property that, if two transactions have timestamps
t1 and t2, with t1 < t2, then any transaction that sees the e�ects of transaction
t2 must also see the e�ects of transaction t1. For example, the wall-clock time at
which a transaction commits can be used as a transaction timestamp, as can a logical
timestamp that simply indicates the order in which transactions commit.

	e validity interval of an object (more precisely, of a version of an object) is a
pair of timestamps de�ning the range of time at which that version was current. 	e
lower bound of this interval is the time at which that object became valid, i.e., the
commit time of the transaction that created it. 	e upper bound is a time after which
the value may no longer be current, i.e., the commit time of the �rst subsequent
transaction to change the result.

For example, Figure 5-1 shows two objects and their validity intervals. Object
A was created by the transaction that executed at timestamp 10 and deleted by
the transaction that committed at timestamp 14. We write its validity interval as
[10,14). Object B has two versions, with validity intervals [11,13) and [13,16).
	e transaction at timestamp 13 updates B’s value, creating a second version.

Every object’s validity interval has a lower bound – the time at which that object
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became valid. For some objects, the upper bound – the time at which the object is
no longer valid – is known. However, for other objects the upper bound may lie in
the future; this is the case for objects that are currently valid. We refer to validity
intervals with a known upper bound as bounded and those where the upper bound
is unknown as unbounded.

To simplify the explanation of the protocol, we assume in this chapter that all
validity intervals are bounded. 	at is, we assume the system has perfect foresight and
knows the timestamp at which an object becomes invalid, even when that timestamp
lies in the future. In Chapter 7, we show how to correctly account for objects that are
still valid by using invalidations: noti�cations from the database that certain values
are no longer current.

5.1.1 properties

Validity intervals have the following properties, which our protocol makes use of.

• intersection: if a new result is computed by reading two or more objects,
the validity interval of the resulting object is the intersection of their validity
intervals. We use this property to determine the validity interval of cached
objects that depend on multiple data objects from the storage layer.

• subset: if an object is valid over an interval [a,b), it is also valid over any
subinterval, i.e., any interval [c,d) where c ≥ a and d ≤ b. 	is seemingly-
trivial property is useful because it means that it is acceptable to use conservative
estimates of validity intervals when they cannot be accurately computed.

• uniqueness: there is exactly one version of any object at any given time, i.e., if
two versions of the object have di�erent values, they must have non-intersecting
validity intervals. 	e converse is not true; it is acceptable to have multiple
versions, valid at di�erent times, that have the same value.

Most importantly, validity intervals are useful because they allow us to ensure
that the system provides transactional consistency. In particular, they allow us to
ensure the following property:
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• consistent reads: if all objects read by a read-only transaction have validity
intervals that contain timestamp t, then the transaction sees the same data it
would if its reads were executed on the database at time t.

	e TxCache library uses this property to ensure that all objects read from either the
cache or the database re�ect a consistent view of the system state. As we discuss in
Appendix B, this property is su�cient to ensure that the cache provides serializable
behavior when used with a database that provides serializability, or snapshot isolation
when used with a database that provides that.

A generalization of this property is that if the intersection of the validity intervals
of all objects read by a transaction has a non-empty interval, then that transaction is
consistent with the data at some point.

5.2 a versioned cache

TxCache stores the results of application computations in its cache, distributed
across the set of cache servers. Section 3.3 described the basic architecture of the
cache, which presents a hash table interface to the TxCache library. In order to
provide support for transactions, we extend our cache to be versioned. In addition
to its key, each entry in the cache is tagged with its validity interval, as shown in
Figure 5-2. 	e cache can store multiple cache entries with the same key; they will
have disjoint validity intervals because only one is valid at any time. 	e cache stores
this information in a hash table, indexed by key, that points to a tree of versions
indexed by their validity interval.

Figure 5-3 shows the interface that the cache provides to the TxCache library.
	e TxCache library can insert objects into the cache using the store command.
Now, in addition to providing the key-to-value mapping it is adding, it must also
provide the associated validity interval. 	is creates a new entry in the cache. If
the cache already contains an existing entry for the same key, it must either have
a disjoint validity interval (i.e., the new entry is a distinct version) or the data of
both versions must match (i.e., the new entry is a duplicate of the existing entry).
Our cache server rejects any request to store a new version of an existing object with
di�erent data but an overlapping validity interval, it rejects the request and issues
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Key 3

Key 4

Timestamp

Figure 5-2: An example of versioned data in the cache. Each rectangle is a version
of a data item. For example, the data for key 1 became valid with commit 51 and
invalid with commit 53, and the data for key 2 became valid with commit 48 and is
still valid as of commit 55. 	ere are two versions of the data with key 3; the gap
between their validity intervals suggests that there is at least one more version that is
not in the cache.

• store(key, value, validity-interval, basis) : Add a new entry to the cache, indexed
by the speci�ed key and validity interval. 	e basis argument is used to track
data dependencies for the invalidation mechanism in Chapter 7.

• lookup(key, timestamp)→ value, interval : Returns the value corresponding to
key whose validity interval contains the speci�ed timestamp, if it is resident in
the cache.

• lookup(key, interval)→ value, interval : Returns the value corresponding to key
whose validity interval intersects the speci�ed interval, if it is resident in the
cache.

Figure 5-3: Cache interface. 	is API is used by the TxCache library to interact with
cache servers.
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a warning; this indicates an error, typically caused by the application attempting
to cache a non-deterministic function. (	is warning exposed a bug in the RUBiS
benchmark, as we discuss in Section 8.2.)

To look up a result in the cache, the TxCache library sends a lookup request
with the key it is interested in and either a timestamp or range of acceptable times-
tamps. 	e cache server returns a value consistent with the library’s request, i.e., the
result of a store request whose validity interval contained the speci�ed timestamp
(or intersects the given range of acceptable timestamps), if any such entry exists. 	e
server also returns the value’s associated validity interval. If multiple such values exist,
as could happen if the TxCache library speci�es a range of timestamps, the cache
server returns the most recent one.

Note, however, that cache lookup operations may fail even if the data was
previously stored in the cache. 	e cache is always free to discard entries if it runs
out of space, or during failures. It is not a problem if data is missing: the cache
contents are soft state, and can always be recomputed. In our versioned cache, a
cache eviction policy can take into account both the time since an entry was accessed,
and its staleness. Our cache server uses a least-recently-used replacement policy, but
also eagerly removes any data too stale to be useful.

5.3 storage requirements

Validity intervals give us a way to manage versioned data in the cache. But where do
these validity intervals come from? Cached objects are derived from data obtained
from the storage layer (e.g., the database), so their validity intervals must also ulti-
mately derive from information provided from the storage layer. Furthermore, the
TxCache library must be able to integrate with the storage layer’s concurrency mech-
anism in order to ensure that cached data is consistent with any information accessed
directly from the storage layer. TxCache, therefore, imposes two requirements on
the storage layer:

• whenever the storage layer responds to a query, it must also indicate the result’s
validity interval

58



• begin-ro(timestamp) : Start a new read-only transaction running at the
speci�ed timestamp.

• begin-rw() : Start a new read/write transaction. 	is does not require
a timestamp; all read/write transactions operate on the latest state of the
data.

• commit()→ timestamp: End the current transaction

• abort() : End the current transaction

Figure 5-4: Concurrency control API requirements for the storage layer

• the storage layer must allow the TxCache library to control which timestamp
is used to run read-only transactions

	e �rst requirement is needed so that the library can compute the validity
intervals of cached objects. 	e second requirement is needed because a transaction
might initially access some cached data, but then miss in the cache and need to
obtain data from the database. To ensure that the data obtained from the database is
consistent with the cached data previously read, the TxCache library must control
which snapshot is used on the database. It does not need this control for read/write
transactions, however, as these transactions always bypass the cache and operate on
the latest state of the database.

	is section speci�es the interface that that TxCache library expects from the
storage layer. Chapter 6 shows how to modify an existing system to support these
requirements.

Figure 5-4 shows the concurrency control API that the TxCache library requires
from the storage layer. It requires the usual functions for grouping operations into
transactions – begin, commit, and abort functions – with a few additions.
When starting a transaction, the library will indicate whether that transaction is
read-only or read/write. For read-only transactions, the storage layer must allow the
library to specify the timestamp at which the transaction runs. TxCache doesn’t
specify a particular interface for how the application queries the storage layer (for
example, a block store and a relational database have very di�erent interfaces) but
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does require that every query also return an accompanying validity interval.
	e storage layer API requirements are similar to TxCache’s cache server API

(Figure 5-3): both expose to the TxCache library control over query timestamps, and
return validity intervals on queries. However, there are some notable asymmetries.
First, the cache takes a timestamp as an argument to its lookup function, whereas
the storage layer has an explicit begin-ro function that starts a read-only transac-
tion. 	e active transaction is tracked as connection state, and subsequent queries
on the same connection are therefore performed relative to the speci�ed timestamp.
We use this interface because it is the standard transaction interface for relational
databases; it also allows us to avoid modifying the syntax for query operations, which
could be complex. 	e second di�erence is that cache lookup operations can
specify a range of acceptable timestamps, but here transactions are restricted to run
on a speci�c timestamp. Again, this is partially a pragmatic choice: it matches the
way databases are implemented. But there is also a more fundamental reason: some
data may not be available in the cache at a given timestamp, so it is useful to specify
a range of acceptable timestamps; the storage layer, however, always has access to all
data for a given timestamp.

5.3.1 pinned snapshots

Ideally, the storage layer would provide the ability to run a read-only transaction at
any arbitrary timestamp that the TxCache library speci�ed in the begin-ro call.
	is requirement can be met by some multiversion storage systems; for example, we
describe the design of a block store that provides this interface in Section 6.1.

In practice, however, it isn’t always possible to modify an existing storage system,
such as a relational database, to support this interface. For reasons we discuss in
Section 6.2.1, providing access to a particular version may require the database to
record and retain additional metadata; the associated cost can render it infeasible
to provide access to all previous versions. As a concession to practicality, therefore,
we allow the storage layer to provide a more restricted interface that can be easier to
implement.

In this more restricted interface, the storage layer allows the TxCache library
to start transactions only on certain timestamps in the past, not arbitrary ones. We
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refer to these timestamps as pinned snapshots. Only these timestamps can be used as
arguments to begin-ro. If the storage layer provides this interface, it must provide
an interface that creates a pinned snapshot from the current database state. TxCache
includes a module (the “pincushion”, described in Section 6.2.3) that creates pinned
snapshots on a regular basis (e.g., every second) and ensures that all application
servers know the timestamps of all pinned snapshots. 	e TxCache library on an
application server can also request that a new pinned snapshot be created at the latest
timestamp, re�ecting the current database state.

5.4 maintaining consistency with
validity intervals

Validity intervals and timestamps make it possible for the system to ensure serializ-
ability. 	e consistent reads property of validity intervals (Section 5.1.1) indicates
that if all objects read by the application during a transaction have validity intervals
that contain timestamp t, then the transaction is serializable at time t. 	e TxCache
library uses this property to ensure transactional consistency of all data accessed from
the cache or the database. It does so using the following protocol. For clarity, we begin
with a simpli�ed version where timestamps are chosen when a transaction begins
(Section 5.4.1). In Section 5.4.2, we describe a technique for choosing timestamps
lazily to take better advantage of cached data.

5.4.1 basic operation

When a transaction is started, the application speci�es whether it is read/write or
read-only, and, if read-only, the staleness limit. For a read/write transaction, the
TxCache library simply starts a transaction on the database server, and passes all
queries directly to it; it does not use the cache for the duration of this transaction. At
the beginning of a read-only transaction, the library selects a timestamp to run the
transaction at. If the storage layer uses the pinned snapshot interface, the selected
timestamp must correspond to a pinned snapshot. If necessary (i.e., if no su�ciently
recent snapshots exist), the library may request a new snapshot on the database and
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select its timestamp.
	e library can delay beginning a read-only transaction on the database (i.e.,

sending a begin-ro operation) until it actually needs to issue a query. 	us,
transactions whose requests are all satis�ed from the cache do not need to connect
to the database at all. When it does start a transaction on the database, the TxCache
library speci�es the timestamp it selected, ensuring that any results obtained from
the database are valid at that timestamp.

When the application invokes a cacheable function, the library checks whether
its result is in the cache. To do so, it identi�es the responsible cache server using
consistent hashing, and sends it a lookup request that includes the transaction’s
timestamp, which any returned value must satisfy. If the cache returns a matching
result, the library returns it directly to the application.

If the requested data is not in the cache – or if it is available in the cache but
not for the speci�ed timestamp – then the application must recompute the cached
value. Doing so requires making an upcall to the application to execute the cacheable
function’s implementation. As the cacheable function issues queries to the database,
the TxCache library accumulates the validity intervals returned by these queries. 	e
�nal result of the cacheable function is valid at all times in the intersection of the
accumulated validity intervals. When the cacheable function returns, the library
marshals its result and inserts it into the cache, tagged with the accumulated validity
interval.

5.4.2 lazy timestamp selection

Which timestamp is selected for a read-only transaction can have a signi�cant impact
on performance. Figure 5-5 illustrates: if a transaction is run at the latest available
timestamp 54, one of the four objects in the cache can be used. If, however, the
transaction were run at the earlier timestamp 51 – which might still be consistent
with the application’s freshness requirement – all four of the objects depicted could
be used. A poor choice of timestamp could also be even more limiting: if timestamp
47 were chosen, no cached objects could be used.

But how should the TxCache library choose the timestamp for a read-only
transaction? Above, we assumed that the library chooses the transaction’s timestamp
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t = 47 t = 51 t = 54

Figure 5-5: An illustration of the importance of timestamp selection. All four objects
in the cache are available to transactions running at timestamp 51, but a transaction
running at timestamp 54 can use only one of them, and a transaction running at
timestamp 47 can use none.

when the transaction starts. Although conceptually straightforward, this approach
falls short because the library does not have enough information to make a good
decision. It does not know what data is in the cache or what its validity intervals are,
as this information is available only on the cache nodes. Furthermore, in our model,
the library also does not even know a priori what data the transaction will access.
Lacking this knowledge, it is not at all clear what policy would provide the best hit
rate.

However, the timestamp does not need to be chosen immediately. Instead, it can
be chosen lazily based on which cached results are available. 	is takes advantage of
the fact that each cached value is valid over a range of timestamps: its validity interval.
For example, consider a transaction that has observed a single cached result x. 	is
transaction can still be serialized at any timestamp in x’s validity interval. When
the transaction next accesses the cache, any cached value whose validity interval
overlaps x’s can be chosen, as this still ensures there is at least one timestamp at which
the transaction can be serialized. As the transaction proceeds, the set of possible
serialization points narrows each time the transaction reads a cached value or a
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(a) Initially, the application is willing to accept any data with
timestamps that satisfy the application’s freshness requirement.
Here, that is the interval [47,55), as indicated by the green region.
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(b) After accessing an object in the cache (key 4), the transaction
is then constrained to access only objects that were valid at the
same time as that object.
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(c) As the transaction accesses other objects, the set of acceptable
timestamps progressively narrows.

Figure 5-6: Example of lazy timestamp selection
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database query result. Figure 5-6 illustrates this process.

Algorithm

Speci�cally, the algorithm proceeds as follows. When a transaction begins, the
TxCache library identi�es the set of all timestamps that satisfy the application’s
freshness requirement. It stores this set as the pin set. If the storage layer can run
transactions on arbitrary timestamps, this set is simply the set of all timestamps
between the application’s staleness limit and the current time. If the storage layer
uses the more restricted pinned snapshot interface, then this is the set of pinned
snapshots in that range. If there are no pinned snapshots in this range, the library
requests the creation of a new one and initializes the pin set with it.

When the application invokes a cacheable function, the library sends a lookup
request for the appropriate key, but instead of indicating a single timestamp, it
indicates the bounds of the pin set (the lowest and highest timestamp it contains).
	e transaction can use any cached value whose validity interval overlaps these
bounds and still remain serializable at one or more timestamps. 	e library then
reduces the transaction’s pin set by eliminating all timestamps that do not lie in the
returned value’s validity interval, since observing a cached value means the transaction
can no longer be serialized outside its validity interval.

When the cache does not contain any entries that match both the key and the
requested interval, a cache miss occurs. In this case, the library calls the cacheable
function’s implementation, as before. When the transaction makes its �rst database
query, the library is forced to select a speci�c timestamp from the pin set and begin
a read-only transaction on the database at the chosen timestamp. 	is ensures that
the application’s database queries are performed with respect to that timestamp. Our
implementation chooses the latest timestamp in the pin set for this purpose, biasing
transactions toward running recent data, though other policies are possible.

	e TxCache library may run multiple database queries within the same transac-
tion at di�erent timestamps. 	is can be necessary if the transaction’s pin set changes
as a result of cached data it later reads. In this case, the library instructs the database
to end its current transaction and start a new one with the newly-chosen timestamp.
	us, from the perspective of the database, the queries are in separate transactions;
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however, the TxCache library, by managing validity intervals, ensures that the query
results are still consistent with each other.

During the execution of a cacheable function, the validity intervals of the queries
that the function makes are accumulated, and their intersection de�nes the validity
interval of the cacheable result, just as before. In addition, just like when a transaction
observes values from the cache, each time it observes query results from the database,
the transaction’s pin set is reduced by eliminating all timestamps outside the result’s
validity interval, as the transaction can no longer be serialized at these points.

	e validity interval of the cacheable function and pin set of the transaction
are two distinct but related notions: the function’s validity interval is the set of
timestamps at which its result is valid, and the pin set is the set of timestamps at
which the enclosing transaction can be serialized. 	e pin set always lies within the
validity interval, but the two may di�er when a transaction calls multiple cacheable
functions in sequence, or performs database queries outside a cacheable function.

Correctness

Lazy selection of timestamps is a complex algorithm, and its correctness is not self-
evident. 	e following two properties show that it provides transactional consistency.

Invariant 1. All data seen by the application during a read-only transaction are consistent
with the database state at every timestamp in the pin set, i.e., the transaction can be
serialized at any timestamp in the pin set.

Invariant 1 holds because any timestamps inconsistent with data the application
has seen are removed from the pin set. 	e application sees two types of data: cached
values and database query results. Each is tagged with its validity interval. 	e library
removes from the pin set all timestamps that lie outside either of these intervals.

Invariant 2. 	e pin set is never empty, i.e., there is always at least one timestamp at
which the transaction can be serialized.

	e pin set is initially non-empty. It contains the timestamps of all su�ciently-
fresh pinned snapshots; if necessary, the library creates a new pinned snapshot. So
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we must ensure that at least one timestamp remains every time the pin set shrinks,
i.e., when a result is obtained from the cache or database.

When a value is fetched from the cache, its validity interval is guaranteed to
intersect the transaction’s pin set at at least one timestamp. 	e cache will only
return an entry with a non-empty intersection between its validity interval and the
bounds of the transaction’s pin set. 	is intersection contains the timestamp of at
least one pinned snapshot: if the result’s validity interval lies partially within and
partially outside the bounds of the client’s pin set, then either the earliest or latest
timestamp in the pin set lies in the intersection. If the result’s validity interval lies
entirely within the bounds of the transaction’s pin set, then the pin set contains
at least the timestamp of the pinned snapshot from which the cached result was
originally generated. 	us, Invariant 2 continues to hold even after removing from
the pin set any timestamps that do not lie within the cached result’s validity interval.

It is easier to see that when the database returns a query result, the validity interval
intersects the pin set at at least one timestamp. 	e validity interval of the query
result must contain the timestamp of the pinned snapshot at which it was executed,
by de�nition. 	at pinned snapshot was chosen by the TxCache library from the
transaction’s pin set. 	us, at least that one timestamp will remain in the pin set after
intersecting it with the query’s validity interval.

5.4.3 handling nested calls

Cacheable functions can be nested, i.e., they can call other cacheable functions. 	is
allows applications to cache data at multiple granularities. Supporting nested calls
does not require any fundamental changes to the approach above. However, we must
keep track of a separate cumulative validity interval for each cacheable function in
the call stack. When a cached value or database query result is accessed, its validity
interval is intersected with that of each function currently on the call stack. As a
result, a nested call to a cacheable function may have a wider validity interval than
the function that calls it, but not vice versa. 	is makes sense, as the outer function
might have seen more data than the functions it calls (e.g., if it calls more than one
cacheable function).
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6
S T O R A G E L AY E R S U P P O RT

	e protocol that TxCache uses for ensuring whole-system consistency requires some
support from the storage layer. Speci�cally, it requires that the storage layer provide
the following two features:

1. It must allow the TxCache library to specify which timestamp a read-only
transaction will run at. If the storage layer is not able to provide access to all
previous timestamps, it must ensure that application servers are aware of which
ones are available.

2. It must report the validity interval associated with every query result it provides

	e �rst requirement is needed to ensure that data obtained from the storage layer
(in the event of a cache miss) is consistent with data read from the cache. 	e second
requirement is needed to determine the validity intervals for cached data.

	is chapter discusses how to meet these requirements. We discuss how to provide
them in two systems. First, we present a simple block store that uses multiversion
concurrency (Section 6.1); it gives an example of how to meet these requirements
in a simple system designed from the ground up to support them. Next, we discuss
how to provide support for relational databases (Section 6.2), where integrating with
existing concurrency control mechanisms and complex query processing presents
more challenges.
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An important concern is that these requirements can be met easily by existing
systems. 	is matters because a cache that operates only with a radically di�erent
backing store is of limited value. Although our cache support does require some
modi�cations to the database, we argue that they are not onerous. In particular,
we show that existing multiversion databases – which include most of the database
systems in common use today – can easily be modi�ed to support these requirements.

6.1 a transactional block store

	e �rst storage system we describe is a simple transactional block store. We present
this system mainly as an instructive example of how one might design a storage
system from the ground up to meet our cache’s requirements. We note, however,
that many practical storage systems do provide a similar interface – either as an end
in itself, as in the case of many “NoSQL” key-value stores [32, 37, 66, 84] – or as a
primitive for building larger distributed systems [59].

Our block store uses a trivial data model: it maintains a set of blocks, identi�ed
by a 64-bit integer ID, which store opaque data. 	e only data operations it provides
are to get the value of a block or replace it with a new value (put).

	e system guarantees serializable isolation for transactions, even when multiple
data blocks are read or modi�ed within a transaction. As shown in Figure 6-1, the
block store provides functions to begin, commit, and abort a transaction. Note that
operations like get and put do not need to explicitly identify which transaction
they are a part of. Rather, the active transaction ID is kept as session state: after
a begin operation starts a transaction, subsequent operations sent on the same
connection are treated as part of that transaction. We use this connection-oriented
interface because it matches the interface provided by relational databases, and we
wanted the same TxCache library to be compatible with both.

An important note about the interface provided by this block store is that it allows
a read-only transaction to be started at any timestamp. 	at is, it has no notion of
pinned snapshots. In order to allow transactions to run at any timestamp, the block
store retains old versions of data inde�nitely; we do not discuss garbage-collection of
old data versions.
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• begin-ro(timestamp) : Start a read-only transaction running at the spec-
i�ed timestamp. If no timestamp is speci�ed, uses the latest timestamp.

• begin-rw() : Start a read/write transaction; always uses the latest times-
tamp.

• commit()→ timestamp : End a transaction, returning the timestamp at
which it ran.

• abort() : End a transaction, discarding any changes it made.

• put(id, data) : Store the speci�ed data in the block identi�ed by id. 	is
replaces the existing data in the block if it exists, or creates it if it does not.

• get(id ) → data, validity : Returns the data stored in block id and its
associated validity interval.

Figure 6-1: Block store API

6.1.1 implementation

	e block store server is built using a versioned storage system similar in design to the
TxCache cache server. Like the cache, it stores a chain of versions for each block ID.
Each version of a block contains the associated data, and is tagged with an associated
validity interval; the validity interval’s end is null if the version is still current. Unlike
the cache, data is stored persistently on disk, and all versions are present.

Figure 6-2 gives a sketch of the implementation of the block store.¹ Starting a
transaction assigns a read timestamp (read_ts) for the transaction; for a read-only
transaction this is the timestamp speci�ed by the TxCache library, whereas for a
read/write transaction it is always the latest timestamp. All get operations in a
transaction are performed with respect to this timestamp; they see only data that is
valid at this timestamp. A get operation, therefore, locates and returns the version of

¹	e implementation described in Figure 6-2 is necessarily simpli�ed. Among other things, it
does not discuss issues related to on-disk storage, or describe the locking required to allow concurrent
processing of requests. Further details about the block store implementation are available in a separate
report [79].

71



the block (if one exists) that was created before the transaction’s read timestamp, and
was not replaced before the transaction’s read timestamp. In a read/write transaction,
creating or updating a block with the put command creates a new version with the
appropriate data, but does not yet �ll it in its validity interval or install it into the
chain of versions for that block ID.

Our block store ensures serializability using optimistic concurrency control [55].
(	is isn’t a fundamental choice; it would be equally reasonable to use strict two-phase
locking [38] to prevent concurrent updates.) Read-only transactions do not require
any concurrency control checks on commit. Committing a read/write transaction �rst
performs a validation phase. If any of the blocks read or written by that transaction
have been updated since the transaction started, the transaction is aborted to prevent
violating serializability. Otherwise, the transaction is permitted to commit and
assigned a timestamp. 	e server then installs the transaction’s changes: it sets the start
of the validity interval on the new version of all modi�ed blocks to the transaction’s
timestamp, and links the version into the chain of previous versions.

Note that this design meets both of TxCache’s storage layer requirements. First,
it allows the TxCache library to control the timestamp of read-only transactions
(as an argument to begin-ro), by using multiversioned storage. Second, it can
report the validity interval associated with each query. Because the query model is
simple, it is trivial for the system to compute the validity interval of a get query: it
is simply the validity interval of the block version accessed. If, however, that block
version is currently valid (i.e., the upper bound of its validity interval is null), the
block store returns a validity interval that ends at the latest timestamp, as shown in
Figure 6-2. 	is truncated interval is a conservative one; Chapter 7 describes how to
use invalidations to give a better answer.

A �nal note about the implementation is that, for read-only transactions, the
begin-ro and commit operations e�ectively do nothing at all. 	ey could be
eliminated in favor of having clients simply indicate a timestamp as an additional
argument to get operations. However, we use the interface described here for
compatibility with the standard transaction interface used by relational databases.
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// per-session state
timestamp read_ts
set<block> readset
set<block> writeset

begin-ro(timestamp) {
read_ts = timestamp

}

begin-rw() {
read_ts = latest_ts

}

get(id) {
// add to readset
readset += id

// walk through the list of versions
block = latest_version[id]
while block != null {
// does this version’s validity interval
// include the timestamp?
if (read_ts >= block.validity.start &&

(read_ts < block.validity.end ||
block.validity.end == null)) {

if (block.validity.end != null) {
// use block’s validity
return (block.data, block.validity)

} else {
// block is still valid, so bound its
// validity interval at the latest time
return (block.data,

[block.validity.start, latest_ts])
}

}
block = block.prev_version

}
// no acceptable version found
return not-found

}

Figure 6-2: Sketch of the block store implementation
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put(id, data) {
block = allocate_new_block()
block.id = id
block.data = data
// will fill in block’s validity interval later
writeset += block

}

commit() {
// don’t need a validation phase
// for read-only transactions
if transaction is read-only
return read_ts

// OCC validation phase
for b in (readset + writeset)

if b modified since transaction start
abort()

// assign timestamp to transaction
ts = increment(latest_ts)

// install new versions
for b in writeset

b.validity.start = ts
b.validity.end = null
b.prev_version = latest_version[b.id]
b.prev_version.validity.end = ts
latest_version[b.id] = b

return ts
}

Figure 6-2: Sketch of the block store implementation (continued)
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6.2 supporting relational databases

A typical deployment of our system will likely use a relational database management
system (RDBMS) as its storage layer, as this is the most common storage architecture
for web applications. As with the block store, we must ensure that it satis�es TxCache’s
two storage layer requirements: it must allow control over which timestamp is used
to run read-only transactions, and it must report the validity intervals for each query
result. However, relational databases have a number of signi�cant di�erences from
the simple block store we previously examined, which present new challenges for
meeting these requirements. We list four di�erences below:

1. Databases typically do not have explicit support for running transactions on
any state other than the current one, and providing this requires integrating
with existing concurrency control mechanisms

	is makes it more challenging to allow the TxCache library control over which
timestamp is used to execute read-only queries, compared to the block store, as the
database was not designed from the ground up to explicitly provide this functionality.

2. Queries do not return a single object. Instead, they access subsets of relations,
speci�ed declaratively – for example, all auctions whose current price is below
$10.

3. Queries involve signi�cant processing in the database: data might be obtained
using a variety of index access methods and subsequently �ltered, transformed,
or combined with other records.

	ese two di�erences make it more complex to compute the validity intervals for
query results. In the block store, which accessed only a single object per query, this
task was straightforward; in a database, a single query performs a computation over
many di�erent data objects (rows), some of which might not ultimately contribute
to the query result.

4. Finally, databases are large, complex, pre-existing pieces of software, unlike the
block store, which was designed from scratch
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	is �nal di�erence doesn’t present any speci�c problems but guides our approach:
a practical solution to adding caching support must not involve redesigning major
components of the RDBMS.

Note that although we discuss these requirements in the context of a relational
database, they are not speci�c to such databases. Some of the challenges described
above also arise in real key-value stores, which are typically more complex and full-
featured than the simple block store we described previously. For example, many
support some form of scanning or searching operation [29, 37].

Although standard databases do not provide the features we need for cache
support, we show they can be implemented by reusing the same mechanisms that
are used to implement widely-used multiversion concurrency control techniques like
snapshot isolation. In this section, we describe how we modi�ed an existing DBMS,
PostgreSQL [81], to provide the necessary support. 	e modi�cations required are
not extensive: our implementation added or modi�ed less than 1000 lines of code.
Moreover, they are not PostgreSQL-speci�c; the approach can be applied to other
databases that use multiversion concurrency.

6.2.1 exposing multiversion concurrency

Because our cache allows read-only transactions to run slightly in the past, the
database must be able to perform queries against a past snapshot of a database. 	is
situation arises when a read-only transaction is assigned a timestamp in the past and
reads some cached data, and then a later operation in the same transaction results in
a cache miss, requiring the application to query the database. 	e database query
must return results consistent with the cached values already seen, so the query must
execute at the same timestamp in the past.

One solution could be to use a temporal database [72], which tracks the history
of its data and allows “time travel” – running queries against previous database
state. Although such databases exist, they are not commonly used, because retaining
historical data introduces substantial storage and indexing cost.² 	erefore, we do

²	e POSTGRES research database, on which PostgreSQL is based, was one such system [97].
However, time travel support was removed early in transition to an open-source production database,
precisely because it was considered too expensive.
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not consider this a practical solution.
Furthermore, these systems are overkill: they are designed to support complex

queries over the entire history of the database. What we require is much simpler:
we only need to run a transaction on a stale but recent snapshot. Our insight is
that these requirements are essentially identical to those for supporting snapshot
isolation [10], so many databases already have the infrastructure to support them. Our
modi�cations, then, are intended to expose control over these internal mechanisms
to the TxCache library.

Background: Multiversion Concurrency Control in PostgreSQL

Our techniques for adding support for TxCache’s requirements to existing databases
take advantage of their existing multiversion concurrency control (MVCC) mecha-
nisms. Accordingly, we begin with a primer on how MVCC techniques are imple-
mented. For concreteness, we describe the implementation of MVCC in PostgreSQL,
the database we use in our implementation. We emphasize, however, that the tech-
niques we describe are not PostgreSQL-speci�c but can be applied to other databases
that use MVCC. Much of what we describe in this section is true of other MVCC
implementations; we indicate some important di�erences.

Databases using multiversion concurrency control store one or more versions of
each tuple. Internally to the storage manager, each transaction has an ID that is used
to identify which changes it made. PostgreSQL tags each tuple version with the ID
of the transaction that created that version (xmin) and the ID of the transaction that
deleted it or replaced it with a new version, if one exists (xmax). When a transaction
modi�es a tuple (an update statement), it is treated logically as two operations:
deleting the previous tuple version, and inserting the new version. 	e tag on each
tuple version is similar to our use of validity intervals, with one important exception:
PostgreSQL’s transaction IDs are opaque identi�ers rather than timestamps, i.e.,
their numeric ordering does not correspond to the commit order of transactions.
(	is is because transaction IDs are assigned when transactions start, not when they
commit.)

Each query is performed with respect to a snapshot, which is represented as a set
of transaction IDs whose changes should be visible to the query. When a transaction
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starts, PostgreSQL acquires a snapshot by computing the set of transactions that have
already committed, and uses that snapshot for the transaction’s queries. During the
execution of a transaction, the PostgreSQL storage manager discards any tuples that
fail a visibility check for that transaction’s snapshot, e.g., those that were deleted by a
transaction that committed before the snapshot, or created by a transaction not yet
committed.

A “vacuum cleaner” process periodically scans the database and removes old tuple
versions that are no longer visible to any running transaction.

Pinned Snapshots

TxCache needs the database to be able to run a read-only transaction on a recent
state of the data. PostgreSQL has the ability to run transactions with respect to
snapshots, so it seems well suited to provide this feature. However, there are two
challenges to providing access to past snapshots. First, we need to ensure that the old
tuple versions are still present; if they are su�ciently old, the vacuum cleaner process
might have removed them. Second, we need to preserve the metadata required to
reconstruct that state of the database, i.e., the set of transactions that need to appear
in the snapshot. PostgreSQL is able to compute the current snapshot, i.e., the set of
currently committed transactions. But it does not know the order in which those
transactions committed, so it does not know which transactions should be visible in
previous snapshots.

We provided an interface that allows the current snapshot to be saved so that it
can be used by subsequent read-only transactions.³ We added a pin command that
acquires and saves the current snapshot. 	e pin command returns an identi�er
that can be provided as an argument to a later begin snapshotid command,
starting another transaction that sees the same view of the database. 	e database
state for that snapshot remains available at least until it is released by the unpin
command. A pinned snapshot is identi�ed by the number of read/write transactions

³	is feature has other uses besides supporting a transactional cache. A “synchronized snapshots”
feature that provides essentially the same functionality was independently developed and is scheduled
to appear in an upcoming release of PostgreSQL. 	e semantics are similar, though not exactly the
same, to the ones we describe here.
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that committed before it, allowing it to be easily ordered with respect to update
transactions and other snapshots.

One way to think of this interface is that the pin command starts a new read-only
transaction, but does not associate it with the active connection (as typically happens
when starting a transaction). Rather, it gives it a name that allows later read-only
queries to be run with the same snapshot, e�ectively making them part of the same
transaction.

Figure 6-3 demonstrates the use of this API. 	e example consists of �ve transac-
tions. Transactions 1 and 2 set up a table that contains four values. After transaction
2, the current snapshot is pinned; it is identi�ed by the latest visible transaction’s
timestamp (2). Transactions 3–5 delete two values from the table and insert one
new one. Finally, we run a read-only transaction and specify that it should run at
timestamp 2. 	is transaction sees the state of the table at the time the snapshot was
pinned, i.e., it does not see the e�ects of transactions 3–5.

In PostgreSQL, we implement pinned snapshots by saving a representation of
the snapshot (the set of transaction IDs visible to it) in a table, and preventing Post-
greSQL’s vacuum cleaner process from removing the tuple versions in the snapshot.
PostgreSQL is especially well-suited to this modi�cation because of its no-overwrite
storage manager [99]. Because stale data is already removed asynchronously, the fact
that we keep data around slightly longer has little impact on performance. However,
our technique is not PostgreSQL-speci�c; any database that implements snapshot
isolation must keep a similar history of recent database states. For example, the Oracle
DBMS stores previous versions of recently-changed data in a separate “rollback seg-
ment”. 	e similarity between the requirements for creating a new pinned snapshot
and those for starting a new transaction (which runs on a snapshot of the database)
suggests that this interface should be straightforward to implement regardless of how
the database’s storage manager is built.

6.2.2 tracking query validity

TxCache’s second requirement for the storage layer is that it must indicate the validity
interval for every query result it returns. 	e TxCache library needs this information
to ensure transactional consistency of cached objects. Recall that this interval is
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−− setup
test=# CREATE TABLE test (x int);
CREATE TABLE

−− timestamp 2
test=# INSERT INTO test VALUES (’1’), (’2’), (’3’), (’4’);
INSERT 0 4

−− Pin the current snapshot
−−	e snapshot is identi�ed by the timestamp of the latest visible transaction: 2
−−	e numbers after ’2’ are a representation of the database’s wall−clock time.
test=# PIN;
PIN 2 1334270999 97317

−− timestamp 3
test=# DELETE FROM test WHERE x=4;
DELETE 1

−− timestamp 4
test=# DELETE FROM test WHERE x=3;
DELETE 1

−− timestamp 5
test=# INSERT INTO test VALUES (’5’);
INSERT 0 1

−−	is read−only transaction is explicitly speci�ed to run at
−− timestamp 2; therefore, it does not see the changes of transactions 3−5
test=# BEGIN READ ONLY SNAPSHOTID 2;
BEGIN
test=# SELECT ∗ FROM test;
x
−−−
1
2
3
4

(4 rows)
SELECT VALIDITY 2 3

test=# COMMIT;

Figure 6-3: Demonstration of pinned snapshots in our modi�ed PostgreSQL
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de�ned as the range of timestamps for which the query would give the same results.
Its lower bound is the commit time of the most recent transaction that added, deleted,
or modi�ed any tuple in the result set. It may have an upper bound if a subsequent
transaction changed the result, or it may be unbounded if the result is still current.
	e validity interval of a query always includes the timestamp associated with the
transaction in which it ran.

As previously noted, each tuple version in PostgreSQL, and in other multiversion
concurrency control databases, is tagged with the ID of the transaction that created
it, and the transaction that deleted it or replaced it with a newer version (if any). 	is
e�ectively serves as a validity interval for that tuple version, although we must translate
from PostgreSQL’s unordered transaction IDs to timestamps that re�ect the commit
order of transactions. To accomplish this translation, we modi�ed PostgreSQL to
maintain a table in memory that maps transaction IDs to logical timestamps, for
transactions that committed after the earliest pinned snapshot.

In the block store, each get query accessed exactly one block, so the validity
interval of the query result is simply the validity interval of the block. In a relational
database, however, a select query may access many tuples. We might attempt to
compute the validity interval of a query by taking the intersection of the validity
intervals of all the tuples accessed during query processing. 	is approach is overly
conservative: query processing often accesses many tuples that do not a�ect the �nal
result (consider the case of a sequential scan, which reads every tuple in a relation,
only to discard the ones that do not match a predicate).

Instead, we compute the validity interval of the tuples that are ultimately returned
to the application. We de�ne the result tuple validity to be the intersection of the
validity times of the tuples returned by the query. To compute it, we propagate
the validity intervals throughout query execution, and take the intersection of the
validity intervals of the returned tuples. If an operator, such as a join, combines
multiple tuples to produce a single result, the validity interval of the output tuple
is the intersection of its inputs. (Aggregate operators require special handling; we
discuss them separately later.)
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Figure 6-4: Example of tracking the validity interval for a read-only query. All four
tuples match the query predicate. Tuples 1 and 2 match the timestamp, so their
intervals intersect to form the result validity. Tuples 3 and 4 fail the visibility test,
so their intervals join to form the invalidity mask. 	e �nal validity interval is the
di�erence between the result validity and the invalidity mask.
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Dealing with Phantoms

	e result tuple validity, however, does not completely capture the validity of a query,
because of phantoms. 	ese are tuples that did not appear in the result, but would
have if the query were run at a di�erent timestamp. For example, in Figure 6-4,
tuples 1 and 2 are returned in the query result; the result tuple validity, therefore, is
[44,47), the intersection of their validity intervals. However, this is not the correct
validity interval for the query result. Timestamp 44 should not be included in the
interval, because the query results would be di�erent if the query were run at this
timestamp. Tuple 3 does not appear in the results because it was deleted before the
query timestamp, but would have been visible if the query were run before it was
deleted. Similarly, tuple 4 is not visible because it was created afterwards.

We capture this e�ect with the invalidity mask, which is the union of the validity
times for all tuples that failed the visibility check, i.e., were discarded because their
timestamps made them invisible to the transaction’s snapshot. 	roughout query
execution, whenever such a tuple is encountered, its validity interval is added to the
invalidity mask. In Figure 6-4, that includes tuples 3 and 4.

	e invalidity mask is a conservative measure. Visibility checks are performed as
early as possible in the query plan to avoid processing unnecessary tuples. Some of
these tuples might ultimately have been discarded anyway, if they failed the query
conditions later in the query plan (perhaps after joining with another table). In
these cases, including these tuples in the invalidity mask is unnecessary. While being
conservative preserves the correctness of the cached results, it might unnecessarily
constrain the validity intervals of cached items, reducing the hit rate. In theory,
this problem could be avoided entirely by delaying the visibility check until just
before returning the query result, after processing is complete; however, this would
be unacceptably expensive because it might involve subjecting tuples to expensive
processing (e.g., multiple joins or complex function processing) only to discard the
results in the end.

To ameliorate this problem, we continue to perform the visibility check as early
as possible, but during sequential scans and index lookups, we evaluate the predicate
before the visibility check. 	is di�ers from PostgreSQL’s usual behavior with respect
to sequential scans, where it evaluates the cheaper visibility check �rst. Delaying
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the visibility checks improves the quality of the invalidity mask, particularly for
sequential scans which must examine every tuple in a relation. It does increase the
processing cost when executing queries with complex predicates – which is why
standard PostgreSQL performs the validity check �rst – but the overhead is low for
simple predicates, which are most common. In our experiments (Chapter 8), we
found that this change did not cause any perceptible decrease in throughput for a
web application.

Finally, the invalidity mask is subtracted from the result tuple validity to give
the query’s �nal validity interval. 	is interval is reported to the TxCache library,
piggybacked on each select query result; the library combines these intervals to
obtain validity intervals for objects it stores in the cache. An example of this reporting
can be seen at the end of Figure 6-3, where the database indicates that the validity
interval of the select query is [2,3) by following the query result with the notice
“select validity 2 3”.

Aggregates

	e approach described above for tracking validity intervals works correctly with all
standard classes of query operators except for one: aggregates, such as the count and
sum functions. Aggregates are fundamentally di�erent than other query operators in
that they do not commute with the visibility check. 	at is, we discussed earlier the
possibility of delaying the visibility check until after query processing is complete,
but this cannot be done with aggregates: it wouldn’t be correct to execute a count
query by gathering the set of all tuple versions, ignoring validity, counting them, and
then trying to perform a validity check.

Tracking the validity interval of aggregates requires an extra step, compared to
other query operators. With other operators, such as joins or �lters, it su�ces to set
the validity interval of the generated tuple to the intersection of the validity intervals
of the tuple or tuple that generated it. For aggregates, we must also add the inverse of
that validity interval to the invalidity mask. 	e reason for this extra step is that an
aggregate, such as count, would produce a di�erent result tuple at times outside the
result’s validity interval. (	is di�ers from operators like joins which produce no tuple
at these other times.) Using the invalidity mask to track this e�ect is appropriate, as
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the tuples corresponding to di�erent aggregate results are e�ectively a di�erent type
of phantom.

6.2.3 managing pinned snapshots

	e database modi�cations described in Section 6.2.1 explain how the database
implements pinned snapshots. However, the TxCache consistency protocol requires
pinned snapshots to be created on a regular basis, and requires application servers
to be aware of which snapshots are pinned on the database, and their associated
wall-clock timestamps. As described in Section 5.4, the TxCache library needs this to
determine which pinned snapshots are within a read-only transaction’s application-
speci�ed staleness limit.

	e block store we described earlier does not require any of this management of
pinned snapshots because it provided access to all previous versions of data. However,
if we wanted the block store to discard su�ciently old data – an important practical
concern – it would also need to notify the application servers as to which versions
are available.

We employ another module called the pincushion to manage the set of pinned
snapshots. It noti�es the storage layer when to create pinned snapshots, releases them
(unpin) when they are no longer needed, and noti�es the application servers about
which snapshots are available. 	is section describes its operation.

Pincushion

	e pincushion is a lightweight daemon that tracks and manages the set of pinned
snapshots. In theory, this functionality could be incorporated into the DBMS itself.
However, we chose to locate it in a separate daemon in order to minimize the changes
we had to make to the database, and to reduce the load on the database (which can
easily become the bottleneck). 	is daemon can be run on the database host, on a
cache server, or elsewhere; in our experiments, we co-located it with one of the cache
servers.

	e pincushion maintains a table of currently pinned snapshots, containing the
snapshot’s ID, the corresponding wall-clock timestamp, and the number of running
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transactions that might be using it. It periodically (e.g., every second; the frequency is
a con�gurable system parameter) sends a pin request to the database server, pinning
the current snapshot. It then adds that snapshot, and the corresponding wall-clock
time (as reported by the database) to the table.

When the TxCache library on an application node begins processing a read-only
transaction, it requests from the pincushion all su�ciently fresh pinned snapshots,
e.g., those pinned in the last 30 seconds. 	e pincushion sends a list of matching
snapshots, and �ags them as potentially in use, for the duration of the transaction. 	e
TxCache library can also request that the pincushion create a new pinned snapshot;
the library would do so if there are no su�ciently fresh pinned snapshots already, e.g.,
if snapshots are taken every second but the application requests to run a transaction
with freshness limit 0.1 seconds.

	e pincushion also periodically scans its list of pinned snapshots, removing any
unused snapshots older than a threshold by sending an unpin command to the
database.

	e pincushion is accessed on every transaction, making it a potential bottleneck
for the scalability of the system. However, it performs little computation, making
this only an issue in large deployments. For example, in our experiments (Chapter 8),
nearly all pincushion requests received a response in under 0.2 ms, approximately
the network round-trip time.

Improving Scalability

Given that the pincushion is a centralized service, it could become a bottleneck
in large systems. Accordingly, we would like to eliminate the requirement for the
pincushion to be accessed on every transaction, in order to improve scalability. We
observe that the pincushion serves two separate purposes: it allows transactions to
look up which snapshots are pinned, and it tracks which snapshots are in use so
that it can unpin old unused snapshots. We address the �rst goal by disseminating
information about pinned snapshots using multicast, and the second using timeouts.

	e pincushion continues to be responsible for creating new pinned snapshots
periodically. However, rather than having application servers contact the pincushion
to learn which snapshots are pinned, we distribute this information using a multicast
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mechanism. Whenever the pincushion creates a new pinned snapshot, it sends a
message containing the snapshot’s ID and timestamp to all application servers. Each
application server uses this to maintain a local copy of the table of pinned snapshots.
Note that this assumes the availability of an application-level multicast system that can
distribute messages from the database to all application servers. 	is is a reasonable
assumption as these servers will typically be in the same datacenter; moreover, our
invalidation mechanism (Chapter 7) also relies on a multicast mechanism.

Because application servers do not contact the pincushion when they start trans-
actions, the pincushion no longer knows which pinned snapshots are in use. To
garbage-collect pinned snapshots, we therefore use a very simple strategy: the pin-
cushion simply removes them after a �xed timeout. When it does, it multicasts a
message to the application servers notifying them of this change so they can update
their table. Unlike the centralized approach, this timeout strategy makes it possible
for a transaction’s snapshot to be released before it has �nished executing, potentially
forcing it to abort because the data is no longer available. However, given a su�-
ciently long timeout, this possibility is unlikely: most transactions should be short,
as long-running transactions are well known to be problematic for many reasons.
Long-running transactions can contact the pincushion to request a longer timeout.
Note, however, that forcing such transactions to abort may even be desirable in some
circumstances, as retaining old versions of data inde�nitely is not without cost.
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7
AU T O M AT I C I N VA L I D AT I O N S

Until now, we have assumed that we know the precise upper bound of all objects
in the cache. But this assumption is clearly not realistic: many cached objects are
still valid, so the upper bound of their validity interval lies in the future and we do
not know what it is. Indeed, these cached objects are often the most useful, as they
may remain valid well into the future. To handle these objects correctly, we need
invalidations: noti�cations from the database to the cache that the data from which
a cached object was computed has changed. 	e cache uses these noti�cations to
keep the validity intervals of cached objects up to date as items change.

Invalidations are challenging. Cached objects can have complex, non-obvious
dependencies on multiple data objects from the storage layer. Existing caches like
memcached leave the question of which objects to invalidate and when entirely to
the application developer. As we argued in Section 3.2, this analysis is challenging
for application developers and a frequent source of bugs. We avoid this and support
a programming model where application developers simply indicate the functions
they would like to cache and the TxCache library handles the rest. Accordingly, our
system is designed to provide automatic invalidations: it tracks data dependencies
and automatically updates the cache when the database is modi�ed.

	is chapter describes how the system tracks objects that are currently valid.
It introduces three components. First, invalidation streams (Section 7.1) give us a
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way to distribute change noti�cations to the cache and process them in a way that
keeps validity intervals up to date. Second, invalidation tags (Section 7.2) allow
us to represent the data dependencies of cached objects. Finally, invalidation locks
(Section 7.3) provide a technique for modifying the storage layer to detect data
dependencies and automatically generate invalidations without the application being
involved.

7.1 unbounded intervals and invalidation
streams

How should the cache represent objects that are currently valid? Other objects have
bounded validity intervals: the upper bound represents a timestamp after which the
object may no longer be valid. Currently-valid objects, however, have unbounded
validity intervals: the precise upper bound is unknown. For these objects, invalidations
from the storage layer will allow us to know when they are no longer valid.

When the database executes a query and reports that its validity interval is un-
bounded, i.e., the query result is still valid, it so indicates by setting a still-valid �ag on
the output. It also provides a concrete upper bound : a timestamp up to which the result
is already known to be valid. 	e timestamp of the latest transaction committed on
the database can serve as this bound (more precisely, the latest transaction committed
before query execution started, as there could be concurrent changes). We write an
unbounded validity interval as, for example, [12,42+). Here, the concrete upper
bound of 42 indicates that the object is valid until at least timestamp 42, and the +
indicates that it may also be valid beyond that time.

When the application performs multiple database queries that are combined
to produce a single cacheable object, the TxCache library combines their validity
intervals by taking their intersection. Computing intersections involving unbounded
intervals follows the obvious rules: the upper bound of the intersection is the smaller
of the concrete upper bounds of the two intervals, and the still-valid �ag is cleared
unless it was set on both input intervals. 	us, for example,

[12,42+) ∩ [15,37+) = [15,37+) and [12,42+) ∩ [15,48) = [15,42)
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7.1.1 invalidation streams

When the storage layer indicates that a query result has an unbounded validity
interval, it assumes responsibility for providing an invalidation when the result may
have changed. It does so by distributing an invalidation stream that identi�es which
cached objects may no longer be valid.

	e invalidation stream is an ordered sequence of messages generated by the stor-
age layer. Each message contains a timestamp indicating the most recently committed
read/write transaction at the time that message was sent, and a list of identi�ers
indicating which cached objects are no longer valid. (Sections 7.2 and 7.3 explain
precisely how invalidations identify the a�ected objects.) If a long time passes without
any read/write transactions committing, the database also sends an empty invalida-
tion message simply to indicate that the latest timestamp is still current. 	is stream
is distributed to all cache nodes using a reliable multicast mechanism.

When a cache node receives an invalidation message, it truncates the validity
intervals of any a�ected cached objects, setting their upper bound to the timestamp
included in the invalidation. 	is re�ects the fact that the corresponding change
in the storage layer may have invalidated the a�ected object. 	e cache treats all
objects that are still valid as though the upper bound of their validity interval is the
timestamp of the latest invalidation received. 	us, receiving an invalidation message
e�ectively acts to extend the validity intervals of objects that are still valid, while
truncating those that are no longer valid. 	is is demonstrated in Figure 7-1.

Including a timestamp invalidation stream message ensures that invalidations are
processed by cache nodes in the correct order. 	e concrete upper bounds used when
adding new objects to the cache further ensure that insert operations are ordered
with respect to invalidations. 	is ordering resolves a potential race condition: a
cached object with unbounded interval might arrive at the cache node after its
invalidation. Note that the window for this race condition is wider than one might
expect. A cacheable object might depend on signi�cant application-level computation
or multiple queries, and the object is not added to the cache until this is complete,
whereas the invalidation might happen any time after the �rst query.

When an invalidation message arrives before the object it is meant to invalidate,
however, the concrete upper bound on the inserted object will be earlier than the
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Figure 7-1: Example of cache invalidation processing. Initially, the latest invalidation
received by the cache server has timestamp 53, so the two objects in the cache with
unbounded intervals are known to be valid at least through time 53. After the cache
receives an invalidation for timestamp 54, the validity interval of the object a�ected
by the invalidation has its upper bound set to that timestamp, while the validity
interval of the other object is extended as it is now known to remain valid at least
through time 54.
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timestamp on the latest invalidation message. To handle this case, cache servers keep
a small history of recently-received invalidation messages so they can check whether
a newly-arrived object has already been invalidated. It isn’t a serious problem if this
history is insu�cient – as might happen if an object took an unusually long time to
compute – because every cached object has a guaranteed upper bound: the concrete
upper bound. 	e cache server simply clears the still-valid �ag, truncating its validity
interval at this bound.

7.1.2 discussion: explicit invalidations

We have not yet addressed the issue of how to detect and track data dependencies so
the system can automatically generate invalidations. We do, however, have enough
of a framework in place that we could easily implement explicit invalidations: the
application can indicate to the database during each read/write transaction which
cached objects are a�ected, and the database can place that information into the
invalidation stream. (It isn’t clear how, in our cacheable-function programming
model, the application would identify cached objects; this approach would be better
suited for a system where applications manage the cache themselves.)

Although this approach doesn’t address the major usability issue we identi�ed
– the need for explicit invalidations – the ordered invalidation stream does address
an important concern for real systems. Speci�cally, it solves the race condition
issue mentioned above, where the invalidation arrives before one of the objects it is
supposed to invalidated. 	is race condition was a concern for MediaWiki developers,
who opted not to use memcached to cache negative lookup results – the fact that an
article doesn’t exist. If a user concurrently created an article, and one of these negative
results was added to the cache just after the invalidation, the negative result might
never be invalidated, causing the article text to e�ectively be lost. 	is situation can’t
arise in our system: the timestamps on the new cached object and the invalidation
messages reveal the ordering.

A key design decision here is that in our system, all invalidations come from the
database server, which generates the invalidation stream. It can therefore guarantee
that the invalidation stream is ordered according to the transaction commit order. In
other systems, applications typically send updates directly to the cache servers; this
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avoids the need for the database to be involved in cache invalidations, but makes it
di�cult or impossible to achieve reliable ordering of updates and invalidations.

7.2 invalidation tags

Invalidation streams alone are enough to allow us to implement explicit invalidations,
but this solution isn’t su�cient. We want to generate invalidations automatically,
which means that we need to be able to represent the data dependencies of a cached
object. We track data dependencies using invalidation tags which can be attached
to objects in the cache. 	ese tags are identi�ers representing a logical set of data
items. As a simple example, one might use an invalidation tag for each relation in
the database. Each currently-valid cached object has a basis: a set of invalidation tags
representing the data used to compute that object, e.g., the relations accessed when
computing the cacheable function.

Having this information for each cached object allows us to send invalidations in
terms of invalidation tags, i.e., in terms of which data objects were modi�ed, rather
than which cached objects were a�ected. 	is is a fundamentally important di�erence.
Identifying the data objects modi�ed by a transaction can be done using local analysis.
Taking, for example, a system that uses database relation IDs as invalidation tags, it is
easy to identify the relations a�ected by an update transaction: the database can track
this information dynamically, or it could be determined using a relatively simple static
analysis of queries. Without invalidation tags, determining which cached objects
might be a�ected by an update requires a global analysis of the program to determine
what data it might be caching.

Every object stored in the cache that has an unbounded validity interval must
also have a corresponding basis so that the cache knows when to invalidate it.¹ 	e
TxCache library includes this information as an extra argument in a store request,
as indicated in Figure 7-2. Invalidation tags are not meaningful for objects that
already have bounded validity intervals, i.e., those that are not currently valid. 	e

¹	e one exception is a cached object that depends on no database state, i.e., a constant compu-
tation. Such an object e�ectively has an in�nite validity interval. 	is rare corner case is not very
interesting.

94



• store(key, value, validity-interval, basis) : Add a new entry to the cache, indexed
by the speci�ed key and validity interval. If the validity interval is unbounded,
the basis is a set of invalidation tags re�ecting the object’s data dependencies.
It is not used for objects with bounded validity intervals.

• invalidate(timestamp, tags) : Update the validity interval for any items with the
speci�ed invalidation tags in their basis, truncating it at the given timestamp.

Figure 7-2: Cache interface with invalidation support. 	is is an extension to the
basic interface in Figure 5-3.

TxCache cache server maintains a tree mapping invalidation tags to the objects whose
basis contains them. When it receives an invalidation message from the invalidation
stream – consisting of a timestamp and a list of the invalidation tags a�ected – the
cache server looks up the a�ected objects, and updates their validity interval. It also
clears their basis, as this information is only needed for objects that are still valid.

7.2.1 tag hierarchy

At what granularity should we track data dependencies? Above, we considered using
invalidation tags to track the database relations that a cached object may have been
derived from. Although it is certainly possible to capture data dependencies at this
level, it is clearly overly conservative. In our auction site example, a query that looks
up the current price for a particular auction will �nd itself with a data dependency
on the entire auctions table. As a result, a modi�cation to any other item in the
same table will cause the cached object to be invalidated, which would have a serious
detrimental e�ect on the cache hit rate.²

We might instead choose to represent data dependencies at a �ne granularity.
Taking this approach to its extreme, we could use individual database tuples as the
invalidation tags. In comparison to relation-level tags, this approach has di�erent

²	e perils of overly course granularity in invalidations are well known in other systems. For
example, the MySQL database includes a simple query cache. It uses relation-level invalidations,
which are su�ciently restrictive that the conventional wisdom is to turn the cache o� entirely for
tables that see even a moderate number of updates [94].
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problems. It prevents the problem described above where an update to a single row
unnecessarily invalidates a cached result that depends on a di�erent row. However,
some queries may access many tuples. A query that accesses every row in a large table
(e.g., to compute aggregate statistics) could easily depend on many thousands of rows;
the resulting basis would be too costly to store or transmit. Similarly, a modi�cation
that updates every row in a large table (e.g., to add a new column as part of a schema
change) could generate invalidations for thousands of rows that would have to be
processed separately. A second problem with tuple-granularity invalidation tags is
that they fail entirely in the presence of phantoms, which we discuss in Section 7.3.

	e tension between overly-coarse relation-granularity tags and overly-�ne tuple-
granularity tags indicates that a single granularity is unlikely to �t all use cases. We
address this by supporting invalidation tags with multiple granularities. 	is provides
the bene�ts of �ne-grained dependency tracking for objects with a small set of
dependencies, but makes it possible to fall back on coarse-grained (e.g., relation-level)
dependency tracking when the costs of doing otherwise would be prohibitive.

To support multiple granularities, we organize invalidation tags into a hierarchy.
A coarse-granularity tag is considered a supertag of all the �ner-granularity subtags it
subsumes. For example, in a system with a two-level hierarchy consisting of relation
and tuple tags, the tag identifying tuple 127 of the users table would be a subtag
of the tag identifying the entire users table. To make the relationship clear, we
would write this tag as users:127, with the colon denoting the subtag relationship.
A more complex system might use more levels in the hierarchy; we discuss one with
four levels in Section 7.3. It is always safe (conservative) to promote a tag in a cached
object’s basis, replacing it with its supertag. 	is can be used to reduce the size of the
object’s basis by coalescing multiple �ne-granularity tags into a coarser-granularity
tag, at the cost of a potential loss in precision.

Invalidations can also be issued at multiple granularities. For example, a single
update transaction might modify a small set of tuples, or modify an entire relation.
Representing the latter as a single invalidation tag reduces the cost both of distributing
the invalidation message and of identifying matching tuples.

In this hierarchical invalidation tag scheme, cache servers need to process invali-
dations according to the following rule:
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• an invalidation message containing invalidation tag x a�ects any cached object
whose basis contains x, a supertag of x, or a subtag of x

	is rule appears somewhat surprising at �rst glance, but an example makes it clear.
An invalidation message for tuple 127 of the users table clearly a�ects any object
whose basis contains the exact tag users:127. It also a�ects any object that depends
on the entire users table, i.e., any supertag of the speci�ed tag. Similarly, if an
invalidation message for the relation-level tag users arrives, it must also invalidate
any object depending on a subtag like users:127, as invalidating the entire relation
necessarily a�ects any objects depending on part of the table.

7.3 invalidation locks

	e �nal piece of the invalidation puzzle is how to automatically determine the
invalidation tags to assign to a cached object, and which invalidation tags to invalidate
as part of a read/write transaction. 	e use of invalidation tags makes this a question
of what data is accessed or modi�ed by the transaction – a question that the database
is in a prime position to answer.

A related question is exactly what semantics we ought to ascribe to particular
invalidation tags. 	e hierarchical tag structure described above explains how to
process tags with multiple granularities, but it does not specify a particular meaning
for each level of the hierarchy. 	is question is more subtle than it might appear.
Above, we considered relation- and tuple-granularity tags. But tuple-granularity tags
are, in fact, problematic for a reason more fundamental than their �ne granularity:
they do not accurately capture read dependencies for relational databases. In the
relational model, queries access subsets of the data identi�ed by predicates, e.g., the
set of users whose name is Alice. Expressing this subset in terms of a set of tuple-level
invalidation tags fails to capture con�icts with newly inserted tuples: creating a new
user named Alice ought to cause the previous result to be invalidated, but would
not. 	is is another instance of the “phantom” problem in database concurrency
control [38].

Accurately representing the read and write dependencies of operations in a
relational database presents quite a challenge. Besides the phantom issue discussed
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above, an e�ective solution should be able to handle complex queries implemented
using a variety of indexes and query operators: what invalidation tags would we
assign, for example, to a cached object containing the list of top ten employees by
salary?

Our insight is that tracking these read and write dependencies is precisely the
problem solved by the database’s concurrency control mechanism. If the database
supports serializable isolation of concurrent transactions, it must have a mechanism
for tracking which objects are read or modi�ed by a transaction. 	is is necessary
regardless of how the database implements serializability, as determining which
transactions con�ict with each other is a fundamental requirement [38]. Moreover,
the database’s mechanism must be capable of dealing with phantoms, and must
be accurate even for complex queries, as these are important requirements for the
correctness of the database system.

	is section presents a general method for adapting existing concurrency control
mechanisms in a database (or other storage system) to determine which invalidation
tags to use or invalidate.

Invalidation Locks. When a read-only transaction accesses the database, it acquires
a new type of lock, an invalidation lock. It acquires these locks on the same data
items the system would normally acquire read locks³ on for concurrency control. 	e
presence of one of these locks indicates that some cached object may depend on the
locked data, and we may later need to send an invalidation if it changes. Invalidation
locks di�er from normal read locks in two important respects. First, they are not
released when a transaction commits. Second, and most importantly, invalidation
locks do not block con�icting write operations; rather, a con�ict simply indicates the
need to send an invalidation. 	is makes “lock” somewhat of a misnomer; it might
be more accurate to refer to them as �ags, but we use the term “lock” to make the
connection to the database’s lock manager clear.4

	e set of invalidation locks acquired during execution of a query determines the

³For clarity, we describe this technique in terms of a database that uses locking for concurrency
control, but this isn’t a requirement.

4	is abuse of nomenclature is not unique to us. Serializable Snapshot Isolation, for example,
uses non-blocking “SIREAD locks” to track read dependencies [19].
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Figure 7-3: A four-level invalidation tag in PostgreSQL’s tag hierarchy

set of invalidation tags that must be applied to any cached objects that depend on it.
If the database already has a hierarchical mechanism it uses internally for tracking
multi-granularity read dependencies (as most common databases do), we use the same
hierarchy for our invalidation locks. 	e canonical example of such a hierarchy would
be the lock hierarchy in a system using multi-granularity locking [40]. However, it
is not speci�c to two-phase locking; other concurrency control approaches such as
optimistic concurrency control [2,55] or serialization graph testing [19,22] frequently
also use a multi-granularity mechanism for tracking read dependencies.

For concreteness, consider the tag structure that is used in PostgreSQL, the
database on which we base our implementation. (Note, by the way, that PostgreSQL
is an example of a database that does not use locking; it uses Serializable Snapshot
Isolation [19, 80], a form of serialization graph testing.) It tracks read dependencies
using a four-level hierarchy. 	e coarsest granularity is an entire database; the next
coarsest is entire relations within that database. Within a relation, �ner-grained
dependencies are expressed in terms of index entries: the next granularity is pages
of a particular index, containing subtags for individual entries on that page. Using
index entries makes it possible to avoid problems with phantoms: whereas a tuple-
granularity tag could not capture the predicate “users whose name is Alice”, a tag
representing the name=alice entry in an appropriate index does. 	is is a standard
technique known as next-key locking [68]. Figure 7-3 shows an example of a four-
level tag.

As read/write transactions acquire locks on data they modify, they may encounter
con�icts with invalidation locks. Unlike normal read locks, the presence of an
invalidation lock does not block the writer. Rather, the lock con�ict “breaks” the
invalidation lock and issues an invalidation: the invalidation lock is removed, and the
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corresponding invalidation tag is added to the invalidation stream. More precisely,
the invalidation lock is not removed and the invalidation is not issued until the
read/write transaction commits; this accounts for the possibility that the transaction
might abort.

	e invalidation lock approach o�ers several bene�ts:

• it doesn’t require careful thought about exactly how to represent data depen-
dencies; it reuses the mechanisms from database concurrency control

• it can handle all types of queries. In particular, using index page locking, it can
represent a range query such as �nding all users with ID between 19 and 37.
In an earlier version of this work [78], we used a simpler scheme that could
not handle range queries without the use of coarse relation-granularity locks.

• it only sends invalidations for data that have invalidation locks set. 	erefore,
it can avoid sending invalidations for data that is not in the cache, or that has
already been invalidated.

7.3.1 storing invalidation locks

	e challenge with invalidation locks is how to maintain the set of invalidation locks
that have been acquired. Because there will be a lock on every piece of data used by
any cached object, the set of invalidation locks is likely to be large. It isn’t unrealistic
to imagine that there might be one lock for every row in the database (or potentially
even more, as there can be locks for multiple index entries). 	is means that the
usual technique of maintaining an in-memory lock table is unlikely to scale.

Fortunately, invalidation locks di�er from regular locks in some ways that can
simplify the task of representing them. First, unlike normal locks, it does not matter
which transaction placed an invalidation lock on a particular object; all that matters
is whether any such lock exists. It is also never necessary to have multiple invalidation
locks on the same object at the same time; it is only necessary to send one invalidation
for a particular tag no matter how many cached objects might depend on it.

	ese simplifying assumptions can be used to reduce the footprint required to
store invalidation locks. All that is needed is a single bit for each lockable object
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representing whether that object currently has an invalidation lock set, i.e., a single
bit per relation, index page, or index entry. 	is bit could be represented simply by
setting a �ag in the row/page header. For a database where the entire data set �ts in
RAM, there is very little cost to maintaining this information as it does not have to
be written to disk. 	is use case is actually a common one; in-memory databases
are increasingly common today [71, 98] and are especially appealing for the sorts of
high-performance web applications that our system targets.

For databases that don’t �t entirely in memory, we could still use the same
approach of storing a �ag in the row header to indicate whether an invalidation lock
is set. However, this would mean that performing a read-only query might require
writing to the disk to set this �ag, which would be undesirable. Instead, we use
another simplifying assumption about invalidation locks: it is always safe to assume
that there is an invalidation lock set on an object, as this would at worst cause a
spurious but harmless invalidation to be sent. Accordingly, we track invalidation
locks for any objects (pages or index entries) that are currently available in the bu�er
cache, but do not make any e�ort to persist the invalidation locks to disk if the pages
need to be swapped out to disk; instead, we simply make the conservative assumption
when loading a page from disk that all of the entries on it have invalidation locks
set. 	is does mean some unnecessary invalidations will be sent, but the number of
these should be low. Most deployments of our system will strive to have as much
data stored in the cache as possible. 	e bene�t of suppressing invalidations for data
that is not cached comes primarily from objects that are updated multiple times in
quick succession, and these will likely be still resident in the bu�er cache.
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8
E VA L UAT I O N

	is chapter analyzes the e�ectiveness of TxCache using the RUBiS web application
benchmark. 	e evaluation seeks to answer the following questions:

• What changes are required to modify an existing web application to use
TxCache? (Section 8.2).

• How much does caching improve the application’s performance, and how does
the cache size a�ect the bene�t? (Section 8.4)

• Does allowing transactions to see slightly stale data improve performance?
(Section 8.5)

• How much of a performance penalty does TxCache’s guarantee of transactional
consistency impose? (Section 8.6)

• How much overhead is caused by TxCache’s modi�cations to the database?
(Section 8.7)

8.1 implementation notes

We implemented all the components of TxCache, including the cache server, database
modi�cations to PostgreSQL to support validity tracking and invalidations, and the
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cache library with PHP language bindings.

Cache Server. 	e cache server implements the versioned cache described in Sec-
tion 5.2. It provides a versioned hash table interface, and maintains an index from
invalidation tags to cached objects necessary to process invalidation messages. 	e
server accepts requests from the TxCache library over a simple TCP-based RPC
protocol. It is single-threaded, allowing it to avoid locking. 	is contributes to the
simplicity of the server: our implementation only requires about 2500 lines of C
code.

Our cache server is not optimized for maximum throughput, as cache throughput
was not a bottleneck in any of our experiments. Several performance optimizations
have been developed for memcached that could be applied to the TxCache cache
server. For example, a custom slab allocator can be used to reduce the cost of allocating
cached objects (our implementation uses the standard system malloc). Using a
UDP-based RPC protocol can also improve performance by reducing memory
overhead and avoiding contended locks in the kernel [90].

Database Modi�cations. We modi�ed PostgreSQL 8.2.11 to provide the neces-
sary support for use with TxCache: pinned snapshots, validity interval computation,
and invalidations. 	is version of PostgreSQL provides snapshot isolation as its
highest isolation level rather than serializability, so we use this con�guration in our
experiments.

Our implementation generates invalidations using a simpli�ed version of the
protocol in Chapter 7. It does not attempt to store invalidation locks; it simply
generates all appropriate invalidations for every update. Our implementation tracks
invalidation tags using two granularities: relation-level tags and index-entry tags.
Because this version of PostgreSQL does not incorporate index-range locking, �ne-
granularity invalidation tags cannot be used for range queries; this limitation was
not an issue for the queries used in our benchmark application. Subsequently, we
incorporated index-range locking into PostgreSQL as part of a new serializable
isolation level [80].

	e modi�cations required to add TxCache support to PostgreSQL were not
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extensive; we added or modi�ed about a thousand lines of code to implement pinned
snapshots and validity interval tracking, and another thousand lines to implement
invalidations.

	e modi�ed database interacts with the pincushion, which creates new pinned
snapshots and noti�es application servers about them. We also use a separate daemon
to receive invalidation notices from the database and distribute them to cache nodes.
It currently sends unicast messages to each cache server rather than using a more
sophisticated application-level multicast mechanism.

Client Library. 	e TxCache library is divided into two parts: a language-independent
component that accesses the cache and ensures consistency, and a set of language-
speci�c bindings. 	e language-independent part uses the lazy timestamp selection
protocol of Section 5.4.2 to ensure consistency between objects read from the cache
and those obtained from the database. It also mediates interactions between the
application and the database: applications must use the TxCache library’s interface
to send queries to the database. 	is interface always passes queries directly to the
database (it does not try to parse or otherwise interpret them), but the library may
also insert commands to start a transaction at an appropriate snapshot, and monitors
the validity intervals and invalidation tags associated with each query result.

PHP Bindings. 	e RUBiS benchmark is implemented in PHP, so we provided a
set of PHP language bindings for TxCache. 	ese bindings provide the support for
applications to designate cacheable functions, and marshal and unmarshal objects
when they are stored in or retrieved from the cache.

We previously presented the TxCache interface in terms of a make-cacheable
higher-order procedure. PHP lacks support for higher-order procedures, so the syntax
is a bit more awkward. Instead, the PHP library provides a txcache_call func-
tion that takes as arguments the name of a function to call and the arguments to pass
to it. 	is function checks for an appropriate result in the cache, and, if none is found,
invokes the function. Figure 8-1 demonstrates a typical use: users invoke a getItem
function which is actually a wrapper function that calls txcache_call.
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function getItemImpl($itemId)
{
$res = sql_query("SELECT * FROM users ...");
〈〈 some computation on query result 〉〉

$user = 〈〈 result 〉〉
return $user;

}
function getItem($itemId)
{
global $TX; // this contains the cache configuration
return txcache_call($TX, ’getItemImpl’, $itemId);

}

Figure 8-1: Example of a cacheable function in PHP

8.2 porting the rubis benchmark

RUBiS [7] is a benchmark that implements an auction website modeled after eBay
where users can register items for sale, browse listings, and place bids on items. We
ported its PHP implementation to use TxCache. Like many small PHP applications,
the PHP implementation of RUBiS consists of 26 separate PHP scripts, written in
an unstructured way, which mainly make database queries and format their output.
Besides changing code that begins and ends transactions to use TxCache’s interfaces,
porting RUBiS to TxCache involved identifying and designating cacheable functions.
	e existing implementation had few functions, so we had to begin by dividing it
into functions; this was not di�cult and would be unnecessary in a more modular
implementation.

We cached objects at two granularities. First, we cached large portions of the
generated HTML output (except some headers and footers) for each page. 	is meant
that if two clients viewed the same page with the same arguments, the previous result
could be reused. Second, we cached common functions such as authenticating a
user’s login, or looking up information about a user or item by ID. Even these
�ne-grained functions were often more complicated than an individual query; for
example, looking up an item requires examining both the active items table and the
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old items table. 	ese �ne-grained cached values can be shared between di�erent
pages; for example, if two search results contain the same item, the description and
price of that item can be reused.

Determinism. Cacheable functions must be deterministic and depend only on
database state. Generally, identifying such functions is easy; indeed, nearly every
read-only function in the system has this property. However, while designating
functions as cacheable, we discovered that one of RUBiS’s actions inadvertently made
a nondeterministic SQL query. Namely, one of the search results pages divides results
into pages using a “select … limit 20 offset n” statement, i.e., returning only
the n through n+20th results. However, it does not enforce an ordering on the items
it returned (i.e., it lacks an order by clause) so the database is free to return any 20
results. 	is caused search results to be divided into pages in an unpredictable and
inconsistent way. 	is turned out to be a known bug in the PHP implementation,
which was not written by the original authors of RUBiS.

TxCache generally leaves determining which functions are cacheable up to the
application developer. However, it incorporates a simple sanity check that was su�-
cient to detect this error. 	e cache issued a warning when it detected an attempt to
insert two versions of the same object that had overlapping validity intervals, but
di�erent values. 	is warning indicated a possible non-determinism.

Optimizations. We made a few modi�cations to RUBiS that were not strictly
necessary but improved its performance. To take better advantage of the cache,
we modi�ed the code that performs a search and displays lists of matching items.
Originally, this function performed a join in the database, returning the list of
matching items and their description. We modi�ed it to instead perform a database
query that obtains the list of matching items, then obtain details about each item
by calling our getItem cacheable function. 	is allowed the individual item
descriptions to be cached separately.

Several other optimizations were not related to caching, but simply eliminated
other bottlenecks with the benchmark workload. For example, we observed that one
interaction, �nding all the items for sale in a particular region and category, required
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performing a sequential scan over all active auctions, and joining it against the users
table. 	is severely impacted the performance of the benchmark with or without
caching, to the point where the system spent the majority of this time processing
this query. We addressed this by adding a new table and index containing each item’s
category and region IDs. We also removed a few queries that were simply redundant.

8.3 experimental setup

We used RUBiS as a benchmark to explore the performance bene�ts of caching. In
addition to the PHP auction site implementation described above, RUBiS provides
a client emulator that simulates many concurrent user sessions: there are 26 possible
user interactions (e.g., browsing items by category, viewing an item, or placing a
bid), each of which corresponds to a transaction. 	e emulator repeatedly selects
the next interaction for each client by following a transition matrix and each client’s
interactions are separated by a randomly-chosen “think time”. We used the standard
RUBiS “bidding” workload, a mix of 85% read-only interactions (browsing) and
15% read/write interactions (placing bids). 	e think time between interactions was
chosen from a negative exponential distribution with 7-second mean, the standard
for this benchmark (as well as the TPC-W benchmark [102]).

We ran our experiments on a cluster of 10 servers, each a Dell PowerEdge SC1420
with two 3.20 GHz Intel Xeon CPUs, 2 GB RAM, and a Seagate ST31500341AS
7200 RPM hard drive. 	e servers were connected via a gigabit Ethernet switch,
with 0.1 ms round-trip latency. One server was dedicated to the database; it ran
PostgreSQL 8.2.11 with our modi�cations. 	e others acted as front-end web servers
running Apache 2.2.12 with PHP 5.2.10 (using mod_fcgi to invoke the PHP
interpreter), or as cache nodes. Four other machines, connected via the same switch,
served as client emulators. Except as otherwise noted, database server load was the
bottleneck.

We used two di�erent database con�gurations. One con�guration was chosen
so that the dataset would �t easily in the server’s bu�er cache, representative of
applications that strive to �t their working set into the bu�er cache for performance.
	is con�guration had about 35,000 active auctions, 50,000 completed auctions,
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and 160,000 registered users, for a total database size about 850 MB. 	e larger
con�guration was disk-bound; it had 225,000 active auctions, 1 million completed
auctions, and 1.35 million users, for a total database size of 6 GB.

For repeatability, each test ran on an identical copy of the database. We ensured
the cache was warm by restoring its contents from a snapshot taken after one hour
of continuous processing for the in-memory con�guration and one day for the
disk-bound con�guration.

For the in-memory con�guration, we used seven hosts as web servers, and two
as dedicated cache nodes. For the larger con�guration, eight hosts ran both a web
server and a cache server, in order to make a larger cache available.

8.4 cache sizes and performance

We evaluated RUBiS’s performance in terms of the peak throughput achieved (re-
quests handled per second) as we varied the number of emulated clients. Our base-
line measurement evaluates RUBiS running directly on an unmodi�ed PostgreSQL
database, without TxCache. 	is achieved a peak throughput of 928 req/s with the
in-memory con�guration and 136 req/s with the disk-bound con�guration.

We then ran the same experiment with TxCache enabled, using a 30 second
staleness limit and various cache sizes. 	e resulting peak throughput levels are shown
in Figure 8-2. Depending on the cache size, the speedup achieved ranged from 2.2×
to 5.2× for the in-memory con�guration and from 1.8× to 3.2× for the disk-bound
con�guration. 	is throughput improvement comes primarily from reduced load on
the database server.

	e RUBiS PHP benchmark does not perform signi�cant application-level
computation. Even so, we see a 15% reduction in total web server CPU usage.
We could expect a greater reduction in application server load on a more realistic
workload than this simple benchmark, as it would likely perform more application-
level computation, e.g., to do more sophisticated formatting of results. Furthermore,
our measurement of web server CPU usage takes into account not just time spent
on legitimate application processing but also the time the PHP interpreter spends
parsing source code on each request.
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Figure 8-2: E�ect of cache size on peak throughput (30 second staleness limit)
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Cache server load is low. Even on the in-memory workload, where the cache
load is spread across only two servers, each cache server’s load remained below 60%
utilization of a single CPU core. Most of this CPU overhead in kernel time, suggesting
ine�ciencies in the kernel’s TCP stack as the cause; switching to a UDP protocol
might alleviate some of this overhead [90]. 	e average cache lookup latency is
0.7 ms, signi�cantly lower than even the in-memory database’s average query latency
of 5.5 ms (and even before the database reaches its capacity). 	ere are an average of
2.4 invalidation tags per cached object, and the tags themselves average 16 bytes.

8.4.1 cache contents and hit rate

We analyzed the contents of the cache (after the warmup period) for both the in-
memory and disk-bound con�gurations. As shown in Table 8-3, the cache contains
many items – over 500,000 for the in-memory con�guration and over 4.5 million
for the disk-bound con�guration. Nearly all of the cache server’s memory (over 95%)
goes to storing the cached values themselves; another 2% goes to storing the names
(keys) for these values. Validity intervals are small (9 bytes per object), so storing
them does not require much space. Invalidation tags are slightly larger (16 bytes, on
average) and more numerous (an average of 2.4 tags per cache entry). However, the
cost of storing invalidation tags is still small: about 2% of memory.

Figure 8-4 shows the distribution of the sizes of cached objects. Half of the cached
objects are smaller than 400 bytes; these objects typically represent the results of
a single database query, such as looking up the name of a user. Most of the rest
of the objects are under 8 KB in size; these objects are typically generated HTML
fragments or the results of more complex queries. 	ere are a handful of objects as
large as 100 KB, e.g., the detailed bid history of especially popular items, but there
are su�ciently few of them that they do not make up a signi�cant fraction of the
cache workload.

Figure 8-5(a) shows that for the in-memory con�guration, the cache hit rate
ranged from 27% to 90%, increasing linearly until the working set size is reached,
and then growing slowly. On the in-memory workload, the cache hit rate directly
translates into an overall performance improvement because each cache hit represents
load removed from the database – and a single cache hit might eliminate the need to
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Figure 8-4: Distribution of cache object sizes. Note the logarithmic x-axis.
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In-memory workload Disk-bound workload

Cache entries 560,756 4,506,747

Total cache size 817.9 MB 7.820 GB
Cached values 778.5 MB (95.2%) 7.477 GB (95.6%)
Cache keys 18.1 MB (2.2%) 145 MB (1.8%)
Validity intervals 4.9 MB (0.6%) 40 MB (0.5%)
Invalidation tags 16.4 MB (2.0%) 166 MB (2.1%)

Table 8-3: Cache contents breakdown

perform several queries.
Interestingly, we always see a high hit rate on the disk-bound database (Figure 8-

5(b)), but this hit rate does not always translate into a large performance improvement.
	is illustrates an important point about application-level caching: the value of each
cached object is not equal, so hit rates alone rarely tell the whole story. 	is workload
exhibits some very frequent queries, such as looking up a user’s nickname by ID.
	ese can be stored in even a small cache, and contribute heavily to the cache hit
rate. However, they are also likely to remain in the database’s bu�er cache, limiting
the bene�t of caching them. 	is workload also has a large number of data items
that are individually accessed rarely (e.g., the full bid history for auctions that have
already ended). 	e latter category of objects collectively makes up the bottleneck
in this workload, as the database must perform random I/O to load the necessary
information. 	e speedup of the cache is primarily determined by how much of this
data it can hold.

8.5 the benefit of staleness

	e staleness limit is an important parameter. By raising this value, applications may
be exposed to increasingly stale data, but are able to take advantage of more cached
data. An invalidated cache entry remains useful for the duration of the staleness limit,
which is valuable for values that change (and are invalidated) frequently.

Figure 8-6 compares the peak throughput obtained by running transactions with
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Figure 8-6: Impact of staleness limit on peak throughput

staleness limits from 1 to 120 seconds. Even a small staleness limit of 5-10 seconds
provides a signi�cant bene�t. 	e RUBiS workload includes some objects that are
expensive to compute and have many data dependencies: for example, indexes of
all items in a particular category along with their current prices. 	ese objects are
invalidated frequently, but the staleness limit permits them to be used. 	e bene�t
begins to diminish at around a staleness limit of 30 seconds. 	is re�ects the fact that
the bulk of the data either changes infrequently (such as information about inactive
users or auctions), or is modi�ed frequently but also accessed multiple times every
30 seconds (such as the aforementioned index pages).

8.6 the cost of consistency

A natural question is how TxCache’s guarantee of transactional consistency a�ects its
performance. We explore this question in two ways: we examine cache statistics to
analyze the causes of cache misses, and we compare TxCache’s performance against
a non-transactional cache.
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8.6.1 cache miss analysis

We classi�ed cache misses into four types, inspired by the common classi�cation for
CPU cache misses [48]:

• compulsory miss: the object was never in the cache, i.e., the cacheable function
was never previously called with the same arguments

• staleness miss: the object has been invalidated, and is su�ciently old that it
exceeds the application’s staleness limit

• capacity miss: the object was previously evicted from the cache

• consistency miss: some su�ciently fresh version of the object was available, but
it was inconsistent with previous data read by the transaction

	e last category, consistency misses, are precisely the category of interest to us, as
these are the cache misses that would be caused by TxCache but would not occur in
a non-transactional cache.

	e TxCache cache server records statistics about the cache hit rate and cache
misses of various types. Figure 8-7 shows the breakdown of misses by type for four
di�erent con�gurations of the RUBiS workload. Our cache server cannot distinguish
staleness and capacity misses, because it discards the associated validity information
when removing an item from the cache either due to staleness or cache eviction.

We see that consistency misses are the least common by a large margin. Consis-
tency misses are rare, as items in the cache are likely to have validity intervals that
overlap with the transaction’s request, either because the items in the cache change
rarely or the cache contains multiple versions. Workloads with higher staleness lim-
its experience a higher proportion of consistency misses (but fewer overall misses)
because they have more stale data that must be matched to other items valid at
the same time. 	e 64 MB-sized cache’s workload is dominated by capacity misses,
because the cache is smaller than the working set. 	e disk-bound experiment sees
more compulsory misses because it has a larger dataset with limited locality, and few
consistency misses because the update rate is slower.
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in-memory DB disk-bound
512 MB 512 MB 64 MB 9 GB
30 s stale 15 s stale 30 s stale 30 s stale

Compulsory 33.2% 28.5% 4.3% 63.0%
Staleness / Capacity 59.0% 66.1% 95.5% 36.3%

Consistency 7.8% 5.4% 0.2% 0.7%

Table 8-7: Breakdown of cache misses by type. Figures are percentage of total misses.
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Figure 8-8: Comparison of TxCache and a non-transactional cache for varying cache
sizes; in-memory workload

8.6.2 experimental comparison

	e low fraction of consistency misses suggests that providing consistency has little
performance cost. We veri�ed this experimentally by comparing against a non-
transactional version of our cache. 	at is, we modi�ed our cache to continue to use
our invalidation mechanism, but con�gured the TxCache library to blithely ignoring
consistency: it accepted any data that was valid within the last 30 seconds, rather
than the usual protocol that requires the validity intervals to intersect.

	e results of this comparison are shown in Figure 8-8, which reproduces the
experiment in 8-2(a): it measures RUBiS system throughput for varying cache sizes
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on the in-memory con�guration. Now, however, the non-transactional version of
our cache is shown as the “No consistency” line. As predicted, the bene�t that this
con�guration provides over consistency is small. On the disk-bound con�guration,
the results could not be distinguished within experimental error.

8.7 database overhead

	e TxCache system requires some modi�cations to the database, to compute va-
lidity intervals, provide access to recent snapshots, and generate invalidations. 	e
experiments described earlier compare the performance of RUBiS running with
TxCache to a baseline con�guration running directly on a unmodi�ed PostgreSQL
database. Not surprisingly, the bene�t of caching exceeds the additional overhead
incurred by the database modi�cations. Nevertheless, we would like to know how
much overhead these modi�cations cause.

To answer this question, we �rst performed the baseline RUBiS performance
experiment (without TxCache) with both a stock copy of PostgreSQL and our
modi�ed version. We found no observable di�erence between the two cases: our
modi�cations had negligible performance impact. Because the system already main-
tains multiple versions to implement snapshot isolation, keeping a few more versions
around adds little cost, and tracking validity intervals and invalidation tags simply
adds an additional bookkeeping step during query execution.

Because our end-to-end web application benchmark saw negligible overhead,
we performed a database-level benchmark to more precisely measure the cost of
these modi�cations. We used the pgbench benchmark [76], a simple transaction-
processing benchmark loosely based on TPC-B [101]. 	is benchmark runs transac-
tions directly on the database server; there is no cache or application server involved.
	e modi�ed database, however, still computes validity intervals and generates inval-
idation messages (which are sent to a “multicast” daemon that simply discards them,
since there are no cache servers). A simulated pincushion contacted the database
every second to obtain a new pinned snapshot, then released after 1–180 seconds.

We ran these benchmarks on a di�erent system con�guration than the RUBiS
benchmark. We used a 2.83 GHz Core 2 Quad Q9550 system with 8 GB RAM
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running Ubuntu 11.10. 	e most signi�cant di�erence is that the database was not
stored on disk at all; rather, it was stored on an in-memory �le system (tmpfs). As
a result, the workload is purely CPU-bound – even more so than the in-memory
RUBiS con�gurations, where modi�cations and write-ahead log updates still had
to be written to disk. 	is is a “worst-case” con�guration intended to expose the
overhead of our modi�cations. In particular, it stresses the invalidation mechanism,
because this in-memory con�guration can support an unusually high update rate
because updates do not need to be synchronously written to disk.

Even on this worst-case, in-memory con�guration, the overhead of TxCache’s
database modi�cations is low. Figure 8-9 compares the performance of our modi�ed
database to stock PostgreSQL 8.2.11. 	e modi�cations impose an overhead of less
than 7% for computing validity intervals and generating invalidations. 	e amount
of overhead also depends on the age of the pinned snapshots that are being held,
as the system must retain all tuple versions that are newer than the earliest pinned
snapshot. 	is makes query processing slightly more expensive, because the system
must examine these versions and decide which ones should be visible to a running
transaction. However, the performance impact is not large: the cost of retaining an
extra 180 seconds of state is under 3%, even with the unusually high update rate of
this benchmark.
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9
R E L AT E D W O R K

Many di�erent forms of caching and replication have been proposed to improve the
throughput of high-performance web applications. Since there are so many such
systems (both research and practical) to make a comprehensive list impractical, this
section discusses some of the systems most closely related to TxCache.

We discuss two broad classes of related systems: application-level caches and
cache management systems for them (Section 9.1), and database-level caches and
replication systems (Section 9.2). We also discuss other systems that have proposed
using multiversion storage and relaxing freshness guarantees (Section 9.3).

9.1 application-level caching

Applying caching at the application layer is an appealing option because it can
improve performance of both the application servers and the database.

9.1.1 web caches

Dynamic web caches operate at the highest layer, storing entire web pages produced
by the application. Typically, they require cached pages to be regenerated in entirety
when any content changes. Such caches have been widely used since the Web became
popular (when content was mostly static) and remain in common use today.
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When used for dynamic content, caches need to invalidate pages when the
underlying data changes. Typically, this is done in one of three ways. First, timeouts
can be used to expire cached data periodically. Second, the cache can require the
application to explicitly invalidate pages when they are modi�ed [107]. Finally, the
system can track data dependencies to identify which objects need to be invalidated
when the underlying database is modi�ed. Challenger et al. [25, 26] describe a web
cache that models the dependencies between cacheable objects and underlying data
objects as a graph; this system requires the application developer to provide this
object dependency graph. Cachuma [109] groups dynamic pages into classes by
their URL, and requires the developer to specify data dependencies for each class.
TxCache also uses invalidations, but integrates with the database to automatically
identify dependencies.

As we noted in the introduction, full-page caching is becoming less appealing
to application developers as more of the web becomes personalized and dynamic.
When a di�erent version of a page is served to each user, caching them has little
value.

9.1.2 application data caches

As a consequence of increased personalization and dynamic content, web developers
are increasingly turning to application-level data caches. 	ese caches allow the
application to choose what to store, including query results, arbitrary application
data (such as Java or .NET objects), and fragments of or whole web pages. TxCache
falls into this category, as do many existing systems.

We have already discussed memcached [65], which provides the abstraction of a
distributed hash table into which the application can store arbitrary binary objects
using a get/put/delete interface. 	e hash-table interface, where objects are
identi�ed by application-speci�ed keys, is a fairly standard one among other caches,
though they often di�er in terms of what types of objects they can store. Other
application-level caches often integrate into a speci�c language runtime, e.g., caches
that cache Java [9, 35, 49] or .NET [69, 92] objects. Redis [84] (which can be used
either as a cache or as a persistent store) can cache a variety of data structures such
as strings, lists, and sets, and provides operations to manipulate them such as set
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intersections and unions. In all cases, the hash-table interface requires application
developers to choose keys and correctly invalidate objects, which we argued can be a
source of unnecessary complexity and application bugs.

Most application object caches have no notion of transactions, so they cannot
ensure even that two accesses to the cache return consistent values. Some caches do
support transactions within the cache. JBoss Cache [49], for example, can use either
locking or optimistic concurrency control to allow transactions to update multiple
cached objects atomically. Windows Server AppFabric [92] (formerly known as Ve-
locity) provides locking functions that can be used to implement similar functionality.
Other caches provide single-object atomic operations; for example, memcached has
a compare-and-set operation that acts on a single key. However, even the caches
that support transactions di�er from TxCache in that they only support atomic
operations within the cache, whereas TxCache provides transactions that operate
across both the cache and storage layer.

Some caches provide support for replicated data [49, 69, 92]. 	ough replication
is a useful technique for ensuring the availability of data despite node failures, this
usually isn’t the reason that these systems support it. Rather, replication is used for
performance: making multiple copies of frequently accessed objects allows multiple
servers (possibly located in di�erent data centers) to handle requests for that object.
	is technique is suitable for objects that are accessed frequently but infrequently
modi�ed. Our cache does not use replication, but it could easily be extended to do
so, as discussed in Section 3.3.1.

We noted in Section 4.2 that it is impossible to guarantee that the cache always
re�ects the latest state of the backing store unless using an atomic commitment
protocol between the cache and the storage layer, which would be prohibitively
expensive. Ehcache [35], a Java object cache, does allow the cache to participate in
a two-phase commit protocol, allowing the cache to be updated atomically with
the database. However, this is not intended to ensure serializability, as this cache
supports only the weaker read committed isolation level. It is instead intended
for durability (the cache stores data on disk, and therefore can recover from crashes).

	e interface of these application-level caches has some similarity to distributed
hash tables (DHTs) from peer-to-peer systems research [82, 89, 96, 108]. Indeed,
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some similar techniques have been used in their implementation, such as the use
of consistent hashing [52] for data partitioning. However, peer-to-peer DHTs are
designed to scale to millions of nodes and use sophisticated routing protocols to
identify the node responsible for storing a particular object without full knowledge
of the system membership. Our cache assumes that the system is small enough that
each node can maintain the entire system membership, as in the OneHop DHT [42].
DHTs are also typically intended for persistent storage, so must address issues of
data durability [30, 95] that our cache can ignore.

9.1.3 cache management

Several others have observed the problems that explicit cache management poses for
developers of applications that use application-level caching, and proposed systems
to address these challenges. Typically, these systems take the form of a library that
mediates interactions with an existing application-layer cache such as memcached.

One approach is to have the application (or a library in the application) update or
invalidate the cache. For example, Cache-Money [18] is a library for the Ruby on Rails
object-relational mapping system that implements a write-through cache: the library
updates the cache before making any changes to the database. 	is library restricts
the application to caching only a speci�c set of objects, corresponding to database
tuples and indexes; it does not allow arbitrary application computations to be cached,
or even more sophisticated database queries such as joins. Wasik [105] proposed a
system for managing consistency in an application that uses memcached. 	is system
analyzes the application code and rewrites it to insert the appropriate invalidations for
each database modi�cation; however, the analysis requires programmers to indicate
what data in the database each cached object depends on. Because this class of
solutions modi�es the application to provide dependencies, it assumes that only one
application modi�es the database. 	is can be a serious restriction in environments
where multiple applications share a database, as changes made by other applications
will not trigger the necessary cache invalidations. In practice, even systems where
a database is used primarily to support a single application may still have other
tools modifying the database, e.g., to support bulk-loading new data or to allow
administrators to manually correct data errors.
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A second approach is to involve the database, using triggers to invalidate cached
objects after each update. 	is approach avoids the aforementioned problem with
multi-application databases, as any modi�cation will invoke the trigger. However, the
database must be told which triggers to create and which cached objects they should
invalidate. Application developers can indicate these dependencies manually [46],
though this approach could be error-prone. CacheGenie [44,45] is a system that auto-
matically creates database triggers for cache invalidation. 	is system integrates with
an object-relational mapping framework (Django) and allows caching application
objects corresponding to a �xed set of common query patterns.

Several of these cache management systems rely on object-relational mapping
(ORM) frameworks like Ruby on Rails, Django, or Java Entity Beans [18,44,45,74].
	ese frameworks provide persistent objects for an application (written in an object-
oriented language) by mapping the objects to a corresponding schema in a relational
database, and automatically generating queries to access it. Caching systems for
these frameworks typically cache �xed categories of objects de�ned by the ORM
framework; often, these objects have a one-to-one correspondence with database
tuples. TxCache uses a more general programming model, caching the results of
calls to cacheable functions. 	is allows TxCache to cache arbitrary application
computations, unlike ORM-based caches. However, because these ORM-based
caches have well-de�ned classes of cached objects, they can update cached objects in
place rather than invalidating and recomputing them, as discussed in Section 3.2.3.

Most of the systems described above do not provide transaction isolation, i.e.,
they do not ensure the consistency of cached data read during a transaction. One
exception is SI-Cache [74], which provides snapshot isolation in a cache of Java
Entity Beans. CacheGenie [45] also describes an extension that provides serializability
by using strict two-phase locking in both the cache and the database.

9.2 database caching and replication

Another popular approach to improving web application performance is to deploy a
caching or replication system within the database layer, or between the database and
the application. 	ese systems address only database performance; unlike application-
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level caches, they o�er no bene�t for application server load. However, they require
no modi�cations to the application.

Query caches are one way to address load in the database layer. 	ese add an
additional layer in front of the database that caches the results of recent queries. As a
simple example, the MySQL database itself includes a query cache that can avoid the
need to process queries that are character-for-character identical to previous ones; it
invalidates a cache entry whenever one of the relations it depended on is modi�ed.
A more sophisticated example is the ABR query cache [33] which uses a dependency
graph to determine which values need to be invalidated. Ferdinand [39] is a query
cache that distributes invalidations using a publish-subscribe multicast system; such
a strategy could be applied to improve the performance of TxCache. None of these
query caches support serializablility for transactions that make multiple queries.

Middle-tier caches also sit in front of the database, but perform more complex
processing. DBProxy [5], for example, caches the results to previous queries, like a
query cache. However, it incorporates a query processor that allows it to also answer
other queries that can be computed from a subset of the cached results. DBCache [16]
and MTCache [58] both run a full DBMS at the cache node, populated with full
or partial tables from the underlying database; the cache determines which queries
can be executed locally and which must be executed by the backing database. 	ese
systems also do not attempt to guarantee serializability for transactions that make
multiple queries.

Materialized views are a form of in-database caching that creates a view table
containing the result of a query over one or more base tables, and updates it as the base
tables change. Most work on materialized views seeks to incrementally update the
view rather than recompute it in its entirety [43]. 	is requires placing restrictions on
view de�nitions, e.g., requiring them to be expressed in the select-project-join algebra.
TxCache’s application-level functions, in addition to being computed outside the
database, can include arbitrary computation, making incremental updates infeasible.
Instead, it uses invalidations, which are easier for the database to compute [21].

A di�erent approach to improving database performance is to replicate the
database. Of the many replication approaches that exist, we focus on those that
provide transactional consistency semantics. (Others o�er weaker guarantees, such
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as eventual consistency [34, 75].) Most replication schemes used in practice take
a primary copy approach, where all modi�cations are processed at a master and
shipped to slave replicas. 	is replication can be performed synchronously to improve
durability, but is often performed asynchronously for performance reasons. One
way to do implement primary-copy replication is to transfer a copy of the master
database’s write-ahead log records to the slaves and replay them there; this “log
shipping” approach is widely used in commercial products. Another way is to use
a middleware component that executes all update transactions on each replica in
the same order [24, 103]. In either case, each replica then maintains a complete, if
slightly stale, copy of the primary database.

Several systems defer update processing to improve performance for applications
that can tolerate limited amounts of staleness. In FAS [87], clients send their queries
to a “scheduler” proxy. 	is scheduler executes read/write transactions on the pri-
mary, then lazily propagates them to the other replicas. In the meantime, it keeps
track of how far each replica’s state lags behind the primary, and routes read-only
transactions to an appropriate replica based on an application-speci�ed staleness
limit. Ganymed [77] takes a similar approach, but relies on each replica database to
provide snapshot isolation so that slave replicas can process read-only transactions
from clients concurrently with updates that are being propagated from the master.

9.2.1 caching vs. replication

Caching and replication are closely related subjects. Like TxCache, both FAS and
Ganymed use the idea of allowing read-only transactions to see slightly stale data in
order to improve their performance. However, TxCache’s design di�ers signi�cantly
from these two systems. One might wonder, then, if techniques like those used
in FAS and Ganymed could be applied in TxCache’s context of application-level
caching.

	ese database replication systems take a proactive approach: after an update to
the master database, they update the other replicas’ state. Such an approach is well-
suited for data replication. After processing a read/write transaction, the set of objects
that need to be updated on each replica is easy to identify: it is exactly the same set
of tuples modi�ed on the master. 	is approach can be applied to application-level
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caching where each application object is a representation of a particular database
tuple [88]. However, the approach isn’t suitable for TxCache’s cache of arbitrary
application computations. 	e set of objects that would need to be updated is
large (there are many possible cacheable function calls), and recomputing them is
expensive.

	erefore, TxCache must take a reactive approach: it opportunistically caches
the results of previous computations. Because these objects were computed at dif-
ferent times, TxCache uses validity intervals to ensure that the application sees a
transactionally-consistent view of the system, even while reading objects that were
not generated at the same time. 	is mechanism isn’t necessary in database replication
systems that proactively update the replicas, as each replica has a complete, consistent
copy of the entire database at any moment.

9.3 relaxing freshness

TxCache builds on a long history of previous work on multiversion concurrency
control. Many di�erent approaches to using multiple versions to ensure isolation
exist [2, 10, 12, 85]. 	e most prevalent such approach in production systems today
is snapshot isolation [10]. In snapshot isolation, all data read by a transaction comes
from a snapshot of the database taken at the time the transaction started. Snapshot
isolation permits some “write-skew” anomalies that would not occur in serializable
executions. TxCache provides the same guarantee as snapshot isolation: within
a transaction, applications see state corresponding to a snapshot of the database,
even though some of it may come from the cache. However, TxCache does not
introduce write skew anomalies into applications, because it does not use the cache
for read/write transactions.

Unlike snapshot isolation, where transactions use a snapshot current as of the
time they started, TxCache can assign transactions a snapshot slightly earlier than
their actual start time. A similar technique, called Generalized Snapshot Isolation [36]
was proposed for use in a replicated database system. Liskov and Rodrigues [61] also
proposed running transactions on past snapshots to improve the performance of
a distributed transactional �le system. Our work is inspired by this proposal. 	e
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proposed �le system uses a backing store similar to the block store we described in
Chapter 6. Because our system supports caching application-level objects derived
from database queries, rather than �le system blocks, it requires new mechanisms
such as dependency tracking (invalidation tags) and validity interval computation
mechanisms suitable for use in a relational database. 	e transactional �le system
also assumes an environment where each client has its own local cache; TxCache has
a di�erent model consisting of a single shared distributed cache.

Bernstein et al. de�ned a notion of relaxed-currency serializability [11] that
encompasses TxCache’s use of stale data, and relies on a similar notion of validity
intervals. 	ey assume a model similar to that of the replicated database systems
previously discussed, in which validity intervals are more readily available. Our
contributions include a technique for easily generating validity intervals using existing
database concurrency control mechanisms, and using them to generate validity
information for application-level objects.

As we argued in Section 4.2, assigning transactions an earlier timestamp is safe as
long as it does not permit any causality anomalies. Other systems also allow operations
to be reordered when there are no causal dependencies. Lamport introduced the
happens-before relation, wherein transactions are considered concurrent if they do
not depend on each other [57]. 	is idea was notably used in the ISIS system [15],
whose virtual synchrony communication model enforced ordering constraints only
on causally-dependent messages.
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10
C O N C L U S I O N A N D F U T U R E W O R K

Application-level caching is a powerful technique for improving the performance of
web applications. 	ese caches store higher-level objects produced using a combina-
tion of database queries and application-level computation. Accordingly, these caches
have the �exibility to be used in many di�erent applications, from caching the results
of individual database queries to entire generated web pages – and, importantly,
various stages of processing in between. Application-level caches can therefore address
two types of performance bottlenecks in web applications. 	ey can reduce the load
on the database layer – often dramatically, as caching complex objects can eliminate
the need for multiple database queries. 	ey can also reduce the load on application
servers, which database-level caching and replication systems cannot address.

10.1 contributions

In this thesis, we have introduced a new application-level cache, TxCache. TxCache is
able to cache the results of arbitrary application computations, retaining the �exibility
described above. TxCache improves on existing application-level caches in three
ways.

First, TxCache provides a simple programming model: cacheable functions.
Rather than requiring application developers to explicitly identify and access data in
the cache – the standard interface for most application-level caches – TxCache simply
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asks application developers to identify functions whose results should be cached.
	e TxCache system then automatically caches the results of that function. 	e
application developer is no longer responsible for naming or invalidating cached data,
both of which we have seen to be a source of application bugs. TxCache implements
its programming model using a new cache library. It avoids the need for explicit
invalidations by using invalidation tags and invalidation locks, new mechanisms for
detecting and tracking data dependencies.

Second, TxCache provides support for transactions. It guarantees that all data
seen by the application within a transaction re�ects a consistent view of the database
state, whether it is accessed directly from the database or through cached objects. 	is
guarantee can prevent exposing anomalous data to the user, allowing application-level
caching to be used by applications that require strict isolation between transactions
– a class of applications that were previously unable to use application-level caches.
Even for other applications, transaction isolation can simplify development. TxCache
ensures transactional consistency by tracking the validity interval of every object in
the cache and database.

Finally, TxCache provides a consistency model where transactions can see slightly
stale data, subject to application-speci�ed freshness requirements. However, it still
guarantees that each transaction sees a consistent view of the data. As we have
seen, when applications can tolerate even a few seconds of stale data, it improves
the e�ectiveness of the cache signi�cantly by allowing objects that are frequently
modi�ed to remain useful. TxCache chooses which snapshot to use for a given
transaction using a lazy timestamp selection protocol that takes into account which
data versions are available in the cache.

To our knowledge, TxCache is the �rst system to provide either automatic cache
management or whole-system transaction support in a cache capable of storing
arbitrary application-computed values.

10.2 future work

Scalability is a major challenge for developers building web sites that handle requests
from millions of users. Application-level caches are one of many techniques that
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are used to address this challenge. Deploying a system like TxCache at large scale –
say, one comparable to Facebook’s memcached deployment with thousands of cache
servers and a database partitioned over thousands of cache nodes – presents new
challenges.

	e most likely barrier to scalability in our design is the invalidation system.
Our invalidation mechanism requires the storage layer to broadcast the invalidation
stream to all cache nodes. Each cache node, therefore, receives a list of invalidation
tags for every update processed by the storage layer. In a large deployment, the cost
of distributing and processing this stream might prove to be excessive: each cache
server must process every invalidation message even if only to determine that it has
no objects a�ected by the invalidation.

One possible approach to improving the scalability of the invalidation mechanism
is to use a publish/subscribe multicast system. Such a system could allow invalidation
messages to be sent only to relevant cache nodes. 	is approach has previously been
used to e�ciently distribute invalidations in a scalable query cache system [39]. A
challenge to this approach is that cached objects are distributed among cache nodes
without any locality. 	at is, the cache objects that depend on a particular database
object are not likely to be stored on the same cache server. Indeed, if many cached
objects depend on a particular database object, they might be distributed across most
of the cache servers; any invalidations for the associated invalidation tag would need
to be distributed to all of them.

	inking more generally about scalability, developments in scalable storage sys-
tems could have an impact on application-level caching. Classically, the backing store
for web applications has been a relational database. In database-backed applications,
one common use for application-level caches like memcached is to store database
tuples, as the lightweight in-memory cache can provide faster responses and greater
scalability than the database. A recent trend is that developers are increasingly turn-
ing to storage systems such as partitioned in-memory databases [98] or key-value
stores [29, 32, 37, 66, 84]. Given that these storage systems are designed to provide
similar scalability and latency advantages, will application-level caching continue
to be useful? We believe that it will, as the ability to cache intermediate results
of application-level computations can substantially reduce the load on application
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servers. Indeed, application-level caching might prove even more useful in applica-
tions that use a key-value store as their persistent storage, as they will need to do
more of their processing in the application layer.

10.3 conclusion

TxCache is an application-level cache designed to be easy to integrate into new or
existing applications. Towards this end, it provides higher-level abstractions designed
to simplify application development: the cacheable-function programming model
simpli�es cache management, and the cache’s transaction support simpli�es reason-
ing about concurrency. In this respect, TxCache di�ers from typical application-level
caches that optimize for a simple cache implementation but require increased com-
plexity in the applications that use the cache. Our experiments with the RUBiS
benchmark show that TxCache is e�ective at improving the performance of a web
application, and that transactional consistency and invalidation support impose
only a minor performance penalty – suggesting that providing higher-level cache
abstractions does not have to come with a performance cost.
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A
C A C H I N G F O R

R E A D / W R I T E T R A N S A C T I O N S

	e system we have presented so far does not use the cache at all for read/write
transactions. Instead, they access data only through the database; this approach
allows the database’s concurrency control mechanism to ensure the serializability of
these transactions. 	is approach is reasonable for application workloads that have
a low fraction of read/write transactions. However, it would be desirable to allow
read/write transactions to access cached data.

a.1 challenges

TxCache’s consistency protocol for read-only transactions ensures that they see a
consistent view of data that re�ects the database’s state at some time within the
application’s staleness limit. 	is guarantee isn’t su�cient to ensure the serializability
of read/write transactions – even with a staleness limit of zero. 	e problem is that
write skew anomalies can occur: two concurrent transactions that update di�erent
values might each read the old version of the object that the other is updating.

Furthermore, read/write transactions must be able to see the e�ects of their own
uncommitted modi�cations, even in cached objects. For example, the read/write
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transaction that places a new bid might update the auction’s price, then read the
auction’s data in order to display the result to the user. In doing so, it should not
access a cached version that does not re�ect the user’s new bid. At the same time, the
changes made by a read/write transaction should not be visible to other transactions
until it commits.

a.2 approach

Here, we describe an approach that allows read/write transactions to use cached data.
	is approach di�ers from the one for read-only transactions in three ways:

• A read/write transaction can only see cached data that is still current, avoiding
the aforementioned write-skew anomalies.

• A read/write transaction cannot use cached objects that are impacted by the
transaction’s own modi�cations, ensuring that the transaction always sees the
e�ects of its own changes

• A read/write transaction cannot add new data to the cache, preventing other
transactions from seeing objects that contain uncommitted data

We require read/write transactions to see data that is still valid in order to prevent
anomalies that could occur if they saw stale data. 	e �rst step towards achieving
this is to have the TxCache library request only objects from the cache server that
have unbounded validity intervals. However, this only ensures that the objects were
valid at the time of the cache access; they might subsequently be invalidated while the
read/write transaction is executing.

To ensure that the cached data seen by a read/write transaction remains current,
we take an optimistic approach. We modify the database to perform a validation
phase before committing the transaction. In this validation phase, the database aborts
the transaction if any of the data it accessed has been modi�ed. To do so, the database
must know what data the application accessed through the cache. Invalidation tags,
which track the data dependencies of cached objects, make this possible. 	e TxCache
library keeps track of the invalidation tags of all the cached objects it has accessed
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during a read/write transaction, and provides these to the database when attempting
to commit a transaction. 	e database keeps a history of recent invalidations. If any
of the tags indicated in the commit request have been invalidated by a concurrent
transaction, it aborts the read/write transaction,

We must also ensure that read/write transactions see the e�ects of their own
changes. Again, invalidation tags make this possible, as they allow the TxCache
library to determine whether a cached object was a�ected by a read/write transaction’s
database modi�cations. During a read/write transaction, the TxCache library tracks
the invalidation tracks the transaction’s writeset: the set of invalidation tags that will
be invalidated by the transaction’s changes. (Note that this requires the database to
notify the read/write transaction of which tags it is invalidating, whereas previously
we only needed to send this list of tags to the caches via the invalidation stream.)
When the library retrieves an object from the cache, it also obtains the object’s basis
– the set of invalidation tags re�ecting its data dependencies. If the object’s basis
contains one of the invalidation tags in the transaction’s writeset, then the application
must not use this object. In this case, the TxCache library rejects the cache object,
treating it as a cache miss and recomputing the cached object. However, unlike a
cache miss in a read-only transaction, the TxCache library does not insert the results
of the computation into the cache, as these results re�ect uncommitted data and
should not yet be made visible to other transactions.
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B
F R O M C O N S I S T E N T R E A D S T O

S E R I A L I Z A B I L I T Y

	e protocol presented in Chapter 5 uses validity intervals to provide a consistent reads
property: all data seen by a transaction re�ects a consistent state of the storage layer,
regardless of whether that data was obtained from the cache or from the database.
	e properties we ultimately want are system-wide transaction isolation guarantees.
	is appendix explains how the consistent reads property interacts with the storage
layer’s concurrency control mechanisms to provide either serializability or snapshot
isolation, depending on which is supported by the storage layer.

	is appendix begins by reviewing the consistent reads property that the consis-
tency protocol provides (Section B.1). We next consider snapshot isolation databases,
and show that the consistent reads property ensures snapshot isolation (Section B.2.)
Subsequently, we consider serializable databases (Section B.3). We �rst show that
TxCache provides serializability for databases that provide a commitment ordering
property, namely that the order in which transactions commit matches the apparent
serial order of execution. We then consider databases that provide serializability
without this stronger requirement, and explain how to extend the system to support
these databases.
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b.1 consistent reads

TxCache ensures that for every read-only transaction, there is a timestamp t such
that the validity intervals of each object read by the transaction contains t. As a
result, the consistent reads property of validity intervals (Section 5.1.1) means that
the transaction sees the e�ects of all read/write transactions that committed before
time t (and no later transactions), i.e., the transaction sees the same data it would if
its reads were executed on the storage layer at time t.

Recall also that read/write transactions do not use the cache, so their reads are
sent directly to the database. (We do not consider here the extensions in Appendix A
that allow read/write transactions to use the cache.)

b.2 snapshot isolation databases

	e property described above is similar to the snapshot isolation level provided by
many multiversion databases, such as Oracle and PostgreSQL. 	is isolation level is
de�ned as follows:

• snapshot isolation: a transaction always reads data from a snapshot of com-
mitted data valid as of its start-timestamp, which may be any time before the
transaction’s �rst read; updates by other transactions active after the start-
timestamp are not visible to the transaction. When a transaction is ready
to commit, it is assigned a commit-timestamp larger than any existing start-
timestamp or commit-timestamp, and allowed to commit only if no concurrent
transaction modi�ed the same data.

(	is de�nition is based on the one given by Berenson et al. [10]; Adya [1] provides
an implementation-independent de�nition in terms of proscribed phenomena in
the serialization graph.)

When used with a snapshot isolation database, TxCache provides snapshot
isolation for all transactions. Read/write transactions certainly have snapshot isolation,
because they bypass the cache and execute directly on the database using its normal
concurrency control mechanisms. Read-only transactions can use cached data, but

140



TxCache’s consistent reads property ensures that transactions are assigned a timestamp
and only see the e�ects of transactions that committed before that timestamp.

TxCache di�ers from snapshot isolation databases in that it allows read-only
transactions to see a consistent state of the database from before the transaction started
(subject to the application-speci�ed freshness requirement). 	at is, a read-only
transaction’s start-timestamp might be lower than the latest commit-timestamp. Our
de�nition of snapshot isolation allows this, though not all de�nitions do. 	e original
de�nition [10] is ambiguous; Adya’s de�nition [1] explicitly permits the system to use
an earlier start time; Elnikety et al. [36] refer to this property as generalized snapshot
isolation, distinguishing it from conventional snapshot isolation. Note, however, that
TxCache only provides this relaxed freshness guarantee for read-only transactions;
read/write transactions still execute with snapshot isolation under either de�nition.

b.3 serializability

	e standard criterion for correct execution of concurrent transactions is serializabil-
ity:

• serializability: the execution of concurrent transactions produces the same
e�ect as some serial execution of the same transactions, i.e., some execution
where only one transaction executes at a time

	is de�nition is implementation-independent; there are many possible ways to im-
plement serializability. For example, two-phase locking [38], optimistic concurrency
control [55], timestamp ordering [85], serialization graph testing [22], and several
other techniques can provide serializability.

Many (though not all) systems that provide serializability also provide the fol-
lowing stronger property:

• commitment ordering¹: the execution of concurrent transactions produces
the same e�ect as a serial execution of the transactions in the order they com-
mitted

¹	e commitment ordering terminology is due to Raz [83]; the same property has also been
referred to as dynamic atomicity [106] and strong recoverability [17].
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If the database provides serializability with this commitment ordering property,
then TxCache’s validity-interval-based consistency protocol is su�cient to provide
serializability (Section B.3.1). If the database does not provide this property, then we
require some additional support from the database to provide serializability, which
might require read-only transactions to sometimes block (Section B.3.2).

b.3.1 serializable databases with the commitment or-
dering property

Two of the most common concurrency control techniques provide this property.
Strict two-phase locking ensures that if two concurrent transactions attempt to make
con�icting accesses to the same object, the second access is blocked until the �rst
transaction completes, thereby ensuring that if one transaction precedes another
in the serial order it also precedes it in the commit order. Optimistic concurrency
control achieves this property by preventing transactions from committing if they
con�ict with a previously-committed transaction.

When used with a database that provides serializability and the commitment
ordering property, TxCache guarantees serializability, even for transactions that use
cached data. Read/write transactions bypass the cache, so the database’s concurrency
control mechanism ensures that there is a corresponding serial order – and that
this serial order matches the order in which the transactions committed. TxCache’s
consistent reads property ensures that each read-only transaction sees the e�ects
of all transactions that committed before that transaction’s timestamp. 	is set of
transactions is a pre�x of the serial order, so the read-only transaction can be serialized
at that point in the serial order.

	e idea of using snapshot reads for read-only transactions while using a standard
concurrency control mechanisms for read/write transactions is not a new one. 	e
�rst instance appears to be a database system from Prime Computer that uses two-
phase locking for read/write transactions, but uses multiversion storage to ensure that
read-only transactions see a consistent snapshot [27, 28]. Bernstein and Goodman
later generalized this technique as the “multiversion mixed method” [13]. A similar
technique can be achieved with many databases today by running read/write trans-
actions with two-phase locking but running read-only transactions under snapshot
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isolation.

b.3.2 serializable databases without the commitment
ordering property

Not all serializability implementations have the commitment ordering property
described above. For example, approaches based on serialization graph testing [22]
do not. One example is Serializable Snapshot Isolation (SSI) [19], which is relevant
because it is used as serializable isolation level in the PostgreSQL DBMS [80] that
we use in our implementation of TxCache. 	is approach guarantees serializability,
but the serial order may not match the order in which transactions commit.

Applying TxCache to a database like this requires some additional support from
the database. 	e reason is that it is more di�cult is that TxCache’s consistent reads
property ensures that each read-only transaction sees the e�ects of all transactions
that committed before a certain time. In other words, the read-only transaction sees
the e�ects of the transactions in a pre�x of the commit order, but this might not be a
pre�x of the serial order.

To see how consistent reads might not be enough to ensure serializability, consider
an example of how the commit order might di�er from the serial order in PostgreSQL’s
Serializable Snapshot Isolation. In this example, we simulate a transaction-processing
system that maintains two tables.² A receipts table tracks the day’s receipts, with each
row tagged with the associated batch number. A separate control table simply holds
the current batch number. 	ere are three transaction types:

• new-receipt: reads the current batch number from the control table, then
inserts a new entry in the receipts table tagged with that batch number

• close-batch: increments the current batch number in the control table

• report: reads the current batch number from the control table, then reads all
entries from the receipts table with the previous batch number (i.e., to display
a total of the previous day’s receipts)

²Kevin Grittner suggested this example.
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If the system is serializable, the following useful invariant holds: after a report
transaction has shown the total for a particular batch, subsequent transactions cannot
change that total. 	is is because the report shows the previous batch’s transactions,
so it must follow a close-batch transaction. Every new-receipt transaction
must either precede both transactions, making it visible to the report, or follow
the close-batch transaction, in which case it will be assigned the next batch
number.

Consider the interleaving of transactions T1 and T2 in the interleaving shown in
Figure B-1. (Ignore the read-only transactionTR for the moment.) In this interleaving,
the new-receipt transaction T1 �rst reads the current batch number, then uses
it to insert a new value into the receipts table. While it is executing, however, the
close-batch transaction T2 increments the batch number and commits �rst –
so the batch number that T1 read is no longer current by the time it commits. 	is
execution would not be permitted by either strict two-phase locking or optimistic
concurrency control. However, this execution is a valid serializable history – it is
equivalent to the serial execution 〈T1, T2〉 – and PostgreSQL’s serializable mode
does allow it.

Note that although there is an equivalent serial order 〈T1, T2〉 for these two
transactions, they commit in the opposite order. 	is means that the database may
have a temporarily inconsistent state in the interval between when they commit,
which is only a problem if some other transaction observes the inconsistent state. For
example, the read-only transaction TR in Figure B-1 reads both the current batch
number and the list of receipts for the previous batch; it sees T2’s incremented batch
number but not T1’s new receipt, violating serializability. To prevent serializability
violations like this, the database needs to monitor the data read by each transaction,
even read-only ones. If executed directly on the database, PostgreSQL would detect
the potential serializability violation here, and prevent it by aborting one of the
transactions.

	is concurrency control approach is problematic for TxCache because the
database needs to be aware of the data read by each transaction, even if that transaction
is read-only. With TxCache, some of the data accessed by a transaction might
come from the cache, and the database would be unaware of this. Validity intervals
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TR T1 T1
(report) (new-receipt) (close-batch)

time

x← SELECT
current_batch

SELECT SUM(amount)
FROM receipts
WHERE batch = x− 1

COMMIT

.

x← SELECT
current_batch

INSERT INTO
receipts
VALUES
(x, somedata)

COMMIT

INCREMENT
current_batch

COMMIT

.

Figure B-1: Example of an anomaly that can occur when the commit order does not
match the serial order
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aren’t su�cient to maintain consistency because they re�ect the commit order of
transactions, not their serial order.

However, it is desirable to support databases such as PostgreSQL that do not have
this commitment ordering property. We can support these databases by observing
that the consistency protocol in Chapter 5 ensures that the data read by any read-only
transaction is consistent with the database state at some timestamp that corresponds
to a pinned snapshot. 	erefore, it is su�cient if pinned snapshots are taken only
at points where the commit order matches the equivalent serial order of execution,
i.e., points where it is not possible for a subsequent transaction to commit and be
assigned an earlier position in the serial order. PostgreSQL already has a way to
identify these points, referred to as safe snapshots, as they are useful for certain in-
database optimizations for read-only transactions [80]. We can ensure that TxCache
interoperates correctly with PostgreSQL’s serializable mode as long as we ensure
that all pinned snapshots are also safe snapshots; this is done by having the pin
command wait until the next safe snapshot is available. One implication of this is
that read-only transactions may have to block while they wait for a safe snapshot to
become available.
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