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Abstract
Despite the increasing importance of protecting confiden-
tial data, building secure software remains as challenging
as ever. This paper describes Aeolus, a new platform for
building secure distributed applications. Aeolus uses in-
formation flow control to provide confidentiality and data
integrity. It differs from previous information flow control
systems in a way that we believe makes it easier to under-
stand and use. Aeolus uses a new, simpler security model,
the first to combine a standard principal-based scheme
for authority management with thread-granularity infor-
mation flow tracking. The principal hierarchy matches
the way developers already reason about authority and
access control, and the coarse-grained information flow
tracking eases the task of defining a program’s security re-
strictions. In addition, Aeolus provides a number of new
mechanisms (authority closures, compound tags, boxes,
and shared volatile state) that support common design
patterns in secure application design.

1 Introduction
Confidential information, such as credit card numbers and
medical records, is increasingly stored online. Keeping
this information secure despite malicious attacks and
human errors is a high priority, as evidenced by recent
regulatory requirements [8,11]. Building secure software,
however, remains as challenging as ever.

Information flow control offers a promising option
for construction of secure software. Traditionally, infor-
mation has been secured through access control, which
constrains who is allowed to read and write information.
Information flow control complements this by allowing
an untrusted entity access to sensitive data as long as it
does not reveal the data. It has long been of interest in
military systems [21], where having access to “top se-
cret” information does not imply the information can be
released to an “unclassified” user.

The decentralized information flow control (DIFC)
model [15] generalizes the approach and makes it use-
ful for arbitrary applications, by replacing central control
with the ability for individuals to define restrictions on the
use of their own information. However, despite much re-
cent research on DIFC systems [6,9,15–17,23,24], infor-
mation flow control has not been widely used in practice.

We believe this is because there are several requirements
that are not met effectively by existing systems:

1. Developers require an understandable and flexible
authority structure. DIFC depends on the use of
authority to determine whether information can be
released or trusted. Programmers who use DIFC
must be able to understand the authority structure
their applications depend on, and they must be able
to change this structure, both by establishing new
lines of authority and by revoking existing authority.

2. Developers require support for the principle of least
privilege, to limit the amount of code that must be
verified to ensure security. It must be both possible
and convenient to run code with reduced privilege.

3. Developers expect a general programming model,
including support for distributed programs and con-
current threads with shared variables.

4. Developers need to do all of the above in the context
of a familiar programming language.

This paper introduces Aeolus, a new DIFC platform
developed to satisfy the above requirements. Aeolus is de-
signed for building distributed applications, such as a web
service that stores many users’ data on multiple servers,
or a medical records system accessed from computers in
doctors’ offices. Aeolus addresses two data security is-
sues: confidentiality and integrity. Confidentiality ensures
that secrets cannot leak except through explicit privileged
operations. Integrity ensures that data from untrusted
sources is not trusted inadvertently.

Aeolus supports the first requirement by providing a
new security model with simple rules based on principals
and tags. Principals represent entities with security inter-
ests, and tags allow principals to categorize information.
Both are familiar real-world concepts that developers are
accustomed to reasoning about. This model allows for
structured, fine-grained delegation of authority, through
an authority state. The authority state allows policies
to be specified declaratively and can be used to enforce
mandatory policy constraints such as separation of duties.
Moreover, Aeolus readily supports revocation.

Aeolus meets the second requirement by providing
new abstractions that support the principle of least privi-
lege [18]. Support for this principle is important for im-



plementing secure applications, but if the mechanisms for
limiting privilege are not convenient they will rarely be
used in practice – as anyone who has attempted privilege
separation on Unix knows all too well. Aeolus’s runtime
environment provides programmers with the ability to
invoke functions with reduced authority, and provides
authority closures, which allow authority to be delegated
to particular programs without fear that that trust can be
misused to run other code.

To support the third requirement, Aeolus provides a
number of additional abstractions. Aeolus allows pro-
grams to run concurrent threads with different levels of
contamination. It uses a memory-safe language to isolate
threads from each other, while providing a low-overhead
secure shared state mechanism that allows for efficient
sharing while still enforcing information flow restrictions.
Aeolus supports distributed programs with a secure RPC
mechanism, and provides boxes, which allow confidential
information to be communicated without contaminating
intermediaries that do not observe the information.

Aeolus is a dynamic DIFC system implemented in a
set of runtime libraries. Thus, it is OS-independent, and
allows programmers to write code in a familiar and con-
ventional programming language, thereby addressing the
final requirement. The Aeolus runtime environment runs
on all nodes in a distributed system, and allows commu-
nication between them while enforcing information flow
restrictions. This paper describes our implementation of
Aeolus for Java, and shows that it has low performance
cost. We have also ported parts of Aeolus to C# and PHP.

Aeolus differs from but is inspired by both streams
of current DIFC research: programming languages that
enforce static restrictions on information flow [14,15,17],
and operating systems that track information flow dynam-
ically [6, 9, 23, 24]. Aeolus has more in common with
the operating system work, as it tracks information flow
dynamically at the granularity of threads rather than re-
quiring programmers to specify restrictions at the level
of individual variables. However, because it operates at
the language runtime level rather than the OS level, it can
provide higher level abstractions for writing secure pro-
grams, such as threads with secure shared state. Whereas
existing DIFC operating systems manage authority with
capabilities, Aeolus uses the authority state. This read-
ily supports revocation and policy constraints, which are
difficult to achieve in capability systems.

2 Aeolus Architecture
Aeolus provides information flow control for a distributed
computing environment; the architecture is shown in Fig-
ure 1. The system consists of many nodes, each of which
runs the Aeolus platform and is trusted to enforce Aeo-
lus’s information flow rules. Accordingly, only trusted
nodes are allowed to enter the system.
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Figure 1: System Architecture

Aeolus tracks information flow within each system
node and between nodes. It allows sensitive information
to flow between system nodes, but the messages are en-
crypted and authenticated so that secrecy and integrity
are protected. Aeolus restricts communication with nodes
outside the system and to I/O devices, all of which are
considered to be untrusted. Information can flow out of
the system only if it is uncontaminated, and information
arriving from the outside is marked as having no integrity.

Aeolus vests authority in principals, which it repre-
sents by principal IDs; each thread in Aeolus runs for
some principal. Similarly to other dynamic information
flow control systems, Aeolus tracks information used by
programs as they execute, and determines whether pro-
grams have the authority to perform security-sensitive op-
erations, such as declassification. This requires a way to
track the authority of principals. Aeolus does this through
authority state; this is shown as residing at a single au-
thority server (AS), but a distributed implementation is
also possible. The AS also tracks system membership;
only nodes registered at the AS are in a deployment.

Threat Model. Aeolus is aimed at preventing errors
and malicious behavior from undermining information
security. The goal is to allow applications to minimize
the amount of their code that needs to be trusted, fol-
lowing the principle of least privilege. Like much prior
work on information flow control, we do not attempt to
address covert-channel and side-channel attacks by ma-
licious software running in the system, or by users who
might transcribe data from the screen. However, we have
been careful to ensure that our mechanisms do not intro-
duce additional covert channels.

The trusted computing base (TCB) for our system con-
sists of our platform code, together with the lower layers
on which it runs: the OS and hardware. We also require a
secure authentication service. In our prototype, we imple-
ment our platform atop the Java Virtual Machine (JVM),
and therefore the TCB includes this as well.

Because the trusted computing base includes a com-



Principals.
• createPrincipal() → P. Returns a new princi-

pal; the creating process’s principal acts for P.
• actsFor(P1, P2). Adds an acts-for link from P2 to

P1. The process must act for P1, and the link must
not create a cycle.

• revokeActsFor(P1, P2). Removes the acts-for
link from P2 to P1 (if one exists); the process must
act for P1.

Tags.
• makeTag() → t. Returns a new tag; the process’s

principal is authoritative for t.
• makeSubtag(t1) → t2. Returns a subtag of a top-

level tag t1. The process must be authoritative for
t1, and becomes authoritative for t2.

• grant(t, P1, P2). Adds a delegation link for t from
P1 to P2. P1 must be authoritative for t, the process
must act for P1, and the link must not create a cycle.

• revokeGrant(t, P1, P2). Removes the delegation
link for t from P1 to P2 (if one exists); the process
must act for P1.

Labels.
• addSecrecy(t). Adds t to the secrecy label.
• declassify(t). Removes t from the secrecy label.

The process must be authoritative for t.
• removeIntegrity(t). Removes t from the in-

tegrity label.
• endorse(t). Adds t to the integrity label. The pro-

cess must be authoritative for t.

Figure 2: Some operations for principals, tags, and labels.

modity operating system and the JVM, Aeolus has a
larger TCB than many DIFC operating systems. Our fo-
cus in this work has not been on reducing TCB complex-
ity but on identifying the right abstractions for developers
to build secure applications; providing a minimal-TCB
implementation of the same abstractions is an interesting
direction for future work. In addition, we believe support-
ing existing operating systems and languages is important
for the system to be adopted.

3 Information Flow Model
This section describes the basic concepts and rules of the
Aeolus security model. Figure 2 shows part of the API.
The complete API is described in the Aeolus reference
manual [1].

3.1 Principals, Tags, and Labels
The Aeolus model is based on three key concepts: princi-
pals, tags, and labels. Principals represent entities with
security interests, such as individuals or companies. Tags
provide a way for principals to categorize their informa-
tion. For example, a user Bob might define three tags, for
his public, financial, and medical information.

Labels are sets of tags and are used to control infor-
mation flow. Each data object (such as a file) and each
thread has two labels: a secrecy label, LS , which reflects
confidentiality of information, and an integrity label, LI ,
which reflects the integrity of information. The labels of
data objects are immutable: they are assigned when the
object is created and cannot be changed. Thread labels
are mutable: as a thread executes, its labels can change
to reflect the secrecy and integrity of the information the
thread has observed, subject to the rules defined below.

Aeolus maintains security state for each thread, con-
sisting of its two labels and its associated principal.

3.2 Information Flow Rules
Information flow from a source S to a destination D is
allowed only if two rules about their labels are satisfied:

• Secrecy Rule: S .LS ⊆ D.LS
• Integrity Rule: S .LI ⊇ D.LI

The secrecy rule ensures that confidentiality is maintained
as data propagates, while the integrity rule keeps track
of influences of low-integrity entities. These rules are an
instantiation of the conventional lattice-based rules [4].

A thread can manipulate its labels by adding and re-
moving tags. Adding a tag to a secrecy label and remov-
ing a tag from an integrity label are safe manipulations,
since the thread only increases its contamination or re-
duces its integrity. However, the following privileged
label manipulations are unsafe because they remove con-
straints on information flow:

• Declassification. Remove a tag from a secrecy label.
• Endorsement. Add a tag to an integrity label.

Therefore, a thread can perform privileged label manipu-
lations only when its principal has authority for the tag
being added or removed. Section 3.3 discusses authority

All label manipulations must be done explicitly. Aeo-
lus differs in this respect from existing DIFC operating
systems, which declassify automatically when a thread
with authority for a tag reads an object with that tag in its
label [6,23]. Forcing programmers to be explicit prevents
leaks due to unintended uses of authority.

3.3 Authority
Authority determines whether a thread can perform privi-
leged label manipulations (declassification and endorse-
ment). Authority starts with tag creation: when a thread
creates a tag, its principal has authority for that tag. Sub-
sequently, authority can be delegated either via acts-for
relationships or via grants. Furthermore, previously dele-
gated authority can be revoked.

When a new principal is created, the principal of the
thread that creates it acts for it and thus has all authority
of the new principal. Subsequently, a thread that acts for
a principal can delegate that authority to other principals.
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Figure 3: Delegation graph for a tag t

Information about acts-for relations is maintained in the
principal hierarchy, which is a directed acyclic graph.

The principal hierarchy is useful to capture authority
relationships for organizations (groups), and also allows
individuals to use different principals for different pur-
poses (roles). A special principal, Ppublic, acts for no prin-
cipals, and can be used to run a computation with no
authority. All principals act for Ppublic.

Delegation through the principal hierarchy is a blunt
instrument, because when one principal acts for another
it has all the authority of that principal. Grants provide a
safer, more controlled, delegation of authority: a principal
can grant its authority for a particular tag to another princi-
pal. Just as tags allow users to categorize information and
provide separate controls for different categories, grants
allows users to control authority over those categories.

The delegation hierarchy for a tag is also a directed
acyclic graph, as shown in Figure 3; each tag has its own
graph. Here, tag t was created by principal alice, alice has
delegated authority for t to both bob and carol, bob has
delegated his authority to dan, and carol has delegated
authority to dan and evan. The principals shown in the
figure all have authority for t, and so do any principals
that act for them either directly or transitively.

Revocation. Revocation of authority is an important
concern in real systems. Aeolus allows both acts-for rela-
tionships and grants to be revoked. Revocation removes a
particular link from the principal hierarchy or delegation
graph, and that revocation is transitive. For example, if
alice revokes her delegation to carol in Figure 3, carol
and evan lose authority for t but dan does not.

Of course, performing a revocation requires authority.
If P2 acts for P1, that link can be revoked only by a thread
that acts for P1. Similarly, a grant can be revoked only by
a thread that acts for the grantor.

3.4 Compound Tags
Applications frequently have sets of tags that are closely
related. Capturing such a relationship makes it easier to
understand the authority structure of the application and
more efficient to run the application.

Aeolus allows developers to express such relationships

with compound tags. This mechanism allows tags to be
grouped statically, as they are created. For example, the
medical records system we describe in Section 5.1 has a
tag for each patient’s data, each a subtag of the all-patient-
data compound tag. Compound tags simplify delegations
and label manipulations. Authority for the entire group of
tags can be granted by delegating authority for the com-
pound tag. Compound tags reduce label size substantially,
since the label only needs to contain the top-level tag, and
make declassification inexpensive as only the top level
tag must be removed.

3.5 Manipulating Authority State
Aeolus maintains authority state, which consists of the
principal hierarchy, tags, and their delegations. Applica-
tions can modify the authority state by creating principals
and tags, or by delegating or revoking authority. These
modifications create opportunities for covert channels
through the authority state. For example, a malicious
application could leak secret information by granting
authority for certain tags to a co-conspirator based on
the contents of the secret; the co-conspirator then learns
about the secret by observing which tags it was granted
authority for.

We avoid these covert channels by permitting only
threads with null secrecy labels to modify the authority
state (i.e., the authority state itself is an object with a null
secrecy label). We believe this is a reasonable restriction,
as modifications to the principal hierarchy are rare and
typically do not occur during normal computation. For
instance, authority state is modified when a new user
is created but not when that user performs operations.
Alternate approaches that allow the principal hierarchy
to be modified by contaminated threads are possible, at
the cost of increased complexity [19, 20].

3.6 Policy Constraints
An important concern in systems that support dynamic
security policies is ensuring that the policies themselves
are correct. An example of a correctness requirement
is separation of duties between doctors, who can view
their patients’ sensitive medical data, and administrative
assistants, who can view billing and insurance records:
no principal ought to be authoritative for both roles.

Such invariants can be enforced by stating policy con-
straints, which are predicates that the authority state must
satisfy. Aeolus prevents modifications to the authority
state that violate a policy constraint. To define a con-
straint, a principal must have authority for every principal
and tag the constraint covers. The ability to define con-
straints over an explicit principal hierarchy is an advan-
tage of Aeolus’s authority model over capability-based
systems.



4 Programming Model
This section describes the programming abstractions Ae-
olus provides, and explains how they support practical
DIFC and the principle of least privilege.

4.1 Threads and Virtual Nodes
Aeolus applications consist of multiple threads, each with
its own security state (principal, secrecy label, and in-
tegrity label). Aeolus threads can share memory, but
their accesses must obey the information flow restrictions.
Each thread’s memory is private; other threads cannot ac-
cess it. Threads can share objects only through Aeolus’s
shared state mechanisms, described in Section 4.2, which
enforce the information flow restrictions.

Distributed applications can run on multiple physical
machines, and multiple applications can be run on the
same physical machine. To support this, each thread is
part of a virtual node. Each virtual node runs on a single
physical node and may contain many threads. Typically,
an application will run one virtual node on each physical
node it uses. Virtual nodes are used to isolate applica-
tions: as we describe below, only threads in the same
virtual node can share memory. Threads can also commu-
nicate with other virtual nodes via RPC as discussed in
Section 4.4, and through Aeolus’s distributed file system.

Importantly, shared state, RPCs, and the Aeolus file
system are the only mechanisms by which Aeolus allows
threads to communicate with each other. All these mech-
anisms check the threads’ secrecy and integrity labels.
Thus, information cannot leak from one thread to another
if it is not permitted by the information flow rules of
Section 3.2.

4.2 Shared Objects and Boxes
Aeolus allows threads to securely share state, while en-
forcing information flow restrictions. The mechanisms
ensure that each thread’s labels accurately reflect infor-
mation communicated through shared state.

Aeolus uses two rules to enforce secure sharing. First,
each object in shared state has labels, and a thread can
only read or modify the object if permitted by the stan-
dard flow control rules. Second, shared objects are en-
capsulated: threads cannot obtain pointers to the interior
of shared objects, which prevents the threads from by-
passing the label checks. Similarly, shared objects cannot
contain pointers to the local memory of any thread. To en-
sure proper encapsulation, Aeolus performs deep copies
of arguments and results of calls on shared objects: it
recursively follows pointers and copies objects, except
for pointers to other encapsulated shared objects.

Users can define shared objects with arbitrary meth-
ods; the Aeolus platform adds runtime label checks and
copies arguments to ensure encapsulation. Aeolus con-
servatively assumes that each method of a shared object

both reads and writes the object (a flow out and a flow
in, respectively). Therefore, calls are allowed only if the
labels of the thread match those of the object exactly.
In addition, the thread’s label cannot be changed while
executing a shared object method.

Aeolus provides three kinds of built-in shared objects
with less restrictive label rules. Shared queues provide a
form of IPC and shared locks provide IFC-aware synchro-
nization among threads. Boxes are in-memory containers
whose labels reflect the contamination of the information
inside the box. A thread can copy data into the box or
copy data from the box if its labels and the box’s labels
allow the flow.

Boxes provide special semantics for RPCs (see Sec-
tion 4.4): contaminated information can be sent inside a
box and the recipient becomes contaminated only when
it opens the box to retrieve the content. For example, a
web server can receive a box containing a password from
a user and pass it to an authentication service without
looking at the password itself. Similar control could be
achieved by using the file system, by having the caller
send the pathname of a file containing the tagged infor-
mation, but using boxes is simpler and more efficient.

Every virtual node has a root object that its threads can
use to access shared state. This object has null labels and
is typically used to locate other shared objects. A shared
object is inaccessible when it cannot be reached from the
root or from any thread. Storage for inaccessible shared
objects is collected automatically.

4.3 Principle of Least Privilege
The principle of least privilege is essential for building
secure applications, because it prevents bugs from be-
coming critical security failures. Aeolus must make it
possible to ensure that each part of the application runs
with only the authority it needs. More than that, it must
make it convenient and efficient to do so, lest this princi-
ple fall by the wayside in practice. Temporarily dropping
authority and regaining it should be as easy as making a
function call.

Aeolus supports the principal of least privilege using
two mechanisms: reduced authority calls, which allow
a thread to drop privilege, and authority closures, which
execute code with previously bound-in authority.

Reduced authority calls are straightforward: the caller
specifies a function to run, and the principal to run it with.
The caller must act for that principal (i.e. it must reduce
authority, not raise it). We expect applications to use these
calls frequently to drop privilege they do not need. Aeolus
also provides reduced authority forks, which start new
threads. During a fork, the arguments to the call must be
copied into the memory of the new thread, so that it does
not share memory with the old one.

An authority closure is an object that is bound to a



principal. The principal is specified when creating the
closure; the thread that creates the closure must act for
that principal. Thereafter, any thread can call methods
of the closure. Calls start running with the labels of the
caller, but the authority (principal) of the closure. On
return, the caller’s labels are merged into the thread’s
labels – a union for the secrecy labels and an intersection
for the integrity labels. This allows the closure to use its
authority to remove contamination added during its own
execution, but it cannot remove contamination its caller
already had.

Programmers create new authority closures by defining
subclasses of AeolusClosure. Closure objects are vested
with authority when they are instantiated: the AeolusClo-
sure constructor is passed a principal, which the caller
must act for. The Aeolus runtime treats closure objects
specially: whenever one of their methods is invoked, the
system switches the thread’s principal to the closure’s
for the duration of the call and performs the label ma-
nipulations described above. An example of an authority
closure is shown in Section 5.3.

4.4 RPCs, External I/O, and Files
Aeolus applications use RPCs to communicate between
virtual nodes. An application makes a closure available
for RPC by binding it to a name. When a remote thread
invokes the RPC, a new thread in the closure’s virtual
node executes the call with the authority of the closure
and the labels of the caller, like calling a closure locally.

A thread must have a null secrecy label to bind a clo-
sure to an RPC name since otherwise the existence of an
RPC with a particular name could be a covert channel.
This restriction is not problematic because applications
typically register RPCs when they start.

Clients outside the system can send requests to Aeolus
nodes using the RPC protocol or by using sockets. Data
received from outside the system is given a null integrity
label since we cannot vouch for its validity. Replies can
only be sent outside the system if the sender’s secrecy
label is null, since we cannot guarantee confidentiality
of data sent to the outside. Furthermore, boxes cannot
be sent externally because external nodes are not trusted
with the contents of the box.

Finally, Aeolus provides a network file system that
enforces DIFC. Files have immutable labels and access
is allowed only if the label constraints are satisfied; the
rules are similar to those in HiStar [23].

5 Evaluation: Expressive Power
This section evaluates Aeolus with respect to the goals
established in the introduction: understandable and flexi-
ble authority structure, support for the principle of least
privilege, and support for distributed and concurrent pro-
grams. We do this by examining three examples, each
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Figure 4: A portion of the authority state for a medical
clinic. For each patient, there is a principal for the patient
(pat), a principal representing the patient’s doctor (pat-dr),
and a tag (pat-data) applied to the patient’s records.

representing a class of similar applications:

• The medical information system (Section 5.1) repre-
sents systems in which there are complex security
relationships between individuals in an organization.

• Bob and the tax preparer (Section 5.2) represents
distributed computations with two parties with dif-
ferent security interests, and demonstrates the use
of boxes.

• The online personal finance service (Section 5.3)
represents computations with many parties with sep-
arate security interests. It illustrates the use of shared
state, and of reduced authority calls and authority
closures to support the principle of least privilege.

5.1 The Medical Clinic
Ensuring confidentiality and integrity of medical records
is a major problem for the health care industry [11]. This
example illustrates the authority structure of such a sys-
tem, requiring delegation, revocation, and compound tags.

Figure 4 shows part of the authority state for a med-
ical clinic. It focuses on a particular patient, Pat. Pat is
represented by principal pat, and has a tag pat-data that
is applied to all records containing Pat’s protected health
information. Accordingly, only threads running as princi-
pals with authority for pat-data can declassify and expose
Pat’s information – for example, to display it on the screen
or send a prescription to the pharmacy.

Only doctors caring for Pat should have authority for
Pat’s information. This constraint is achieved by having
Pat grant authority for the pat-data tag to a pat-dr principal.
Then, one or more doctors (in Figure 4, just dr-bob) can
act for the pat-dr role. Importantly, these delegations can
be changed. If Pat gets a new doctor, the clinic-admin,
who also acts for pat-dr, can allow the new doctor to act
for pat-dr. If Pat changes doctors, the clinic-admin can



revoke the acts-for link between pat-dr and dr-bob, thus
ensuring that dr-bob no longer has authority for Pat’s
data.

In addition to providing doctors access to patient
records, the medical clinic also runs a statistical anal-
ysis package periodically. This code runs as an authority
closure with principal stats, which is delegated authority
for all patient tags; the code is trusted to obfuscate the
result. To perform the delegation, the medical clinic uses
a compound tag, all-patient-data; pat-data and the other
patients’ tags are subtags of this compound tag. Using
the compound tag makes the label small (it contains just
the compound tag) and allows efficient declassification
(only one check is required), even though there may be
thousands of patients. The delegation to stats also does
not need to be changed when new patients are added.

Discussion. The medical clinic application benefits
from Aeolus’s authority model. It is natural to describe
the relationship between Pat, Pat’s doctor, and Pat’s data
using principals and tags. By examining the authority
structure, one can easily answer the question of who can
declassify Pat’s medical records. Further, constraints can
be enforced, such as requiring that only doctors can act
for a doctor role. In existing DIFC operating systems,
authority is managed by capabilities, so these policies
would require additional application-specific trusted code
to control access to the appropriate declassification capa-
bility.

This application also benefits from support for revo-
cation: removing dr-bob’s access is simply a matter of
revoking a particular delegation. Once this delegation is
revoked, threads running on behalf of dr-bob, or anyone
to whom he might have delegated authority, can no longer
declassify Pat’s data. In systems that use capabilities, re-
vocation is more challenging, because capabilities cannot
typically be revoked: threads may already be running
with the revoked authority, and most DIFC operating sys-
tems also allow capabilities to be stored persistently on
disk. Modern capability systems address this problem by
building higher-level abstractions atop capabilities [13];
Aeolus provides these abstractions directly.

5.2 Bob and the Tax Preparer
This example, from [15], illustrates the use of distributed
computation and boxes. Here, Bob is a client of an online
tax preparation service. He submits his financial informa-
tion to the service, along with billing information that is
used to charge Bob for the service. The tax preparer then
uses a proprietary database to produce Bob’s tax form.
There are two secrecy goals: Bob’s financial information
and tax form are confidential and only Bob should be
able to see them; and the tax preparer’s database is con-
fidential and should not be disclosed to Bob or anyone
else.

In our implementation, Bob uses a client that commu-
nicates with the tax preparer via RPC; both run on Aeolus
nodes. The RPC is handled by a thread with authority for
the tax-prep tag. Bob’s client places his information in a
box with secrecy label {bob} and sends the box in an RPC
to the tax preparer, along with Bob’s untagged billing
information. The thread in the tax preparer’s virtual node
that executes the RPC records Bob’s billing information.
Then it adds tags bob and tax-prep to its secrecy label,
allowing it to open the box containing Bob’s financial
information and read the proprietary tax database. Next,
it computes Bob’s tax form, uses its authority to remove
the tax-prep tag, and returns the form to Bob.

Discussion. This example benefits from Aeolus’s sup-
port for distributed computation. In particular, Bob can
send an RPC with arguments that contain labeled data,
and rely on the tax preparer’s Aeolus runtime to ensure
secrecy. Most prior DIFC systems cannot communicate
sensitive information over the network. The notable ex-
ception is DStar [24], but it forces applications to period-
ically refresh authority, which is inconvenient.

The use of boxes is essential in this example. The tax
preparer does not have authority for bob. If it became con-
taminated immediately upon receiving the RPC, it could
not record the billing data in a file without bob in the label.
Boxes allow the thread to avoid becoming contaminated
until it actually reads Bob’s sensitive information.

5.3 Financial Management Service
Our final example, which we use as a benchmark in Sec-
tion 7.1, is an online personal finance management ser-
vice inspired by Mint.com. Users provide the system with
online banking credentials for their bank accounts, and
the service aggregates their transaction histories, com-
putes statistics, and produces a report. The application
uses files and shared state to store information securely,
and uses authority closures and reduced authority calls
to run code with minimal authority. Users and banks are
external entities in this system, and do not run the Aeolus
platform; all communication with these entities must thus
be done with null labels.

There are several clear security requirements. A user’s
financial data must not be exposed to other users or third-
party banks. A user’s online banking credentials (user-
name and password) are even more sensitive: they should
not be used for any purpose other than to log in to the cor-
responding bank. They should not even be revealed to the
user, in case the user’s access to the site is compromised.

To capture these constraints, each user has a separate
tag, e.g., alice-data and a principal, e.g., alice, that is
authoritative for this tag. These tags are subtags of the
all-user-data compound tag. There is also a principal for
each bank, and an associated tag that is used to protect
users’ credentials for that bank.



A user’s financial data is stored in a file with the ap-
propriate user-data tag in its secrecy label. Each of a
user’s bank credentials is stored in its own file, with a
secrecy label containing both the user’s tag and the ap-
propriate bank tag; this way even the user can’t expose
the credentials.

Because a user’s session might consist of many re-
quests, the service also caches information for active
users in a shared hash table that maps user IDs to session
state for that user. Within a session-state object are boxes
containing bank credentials for each of that user’s banks.
The labels here mirror those of the files: the secrecy la-
bel of the session-state object contains the user-data tag,
while each box has both the user-data and the bank tags
in its secrecy label.

When Alice requests to display her recent transactions,
the request is received (over a secure channel) by a thread
that is authoritative for all users. After validating the
user’s identity, it makes a reduced authority call, dropping
its authority to the alice principal.

The thread then locates the session-state object contain-
ing her information (assuming it is in the cache). Reading
Alice’s session-state object requires adding the alice-data
tag to the thread’s secrecy label. If a bug in the code
caused the thread to read a different user’s information,
it will not be able to remove the corresponding tag and
thus cannot leak it outside the system.

The thread then calls an authority closure for each
of Alice’s banks. This closure takes the box containing
Alice’s credentials for that bank, and obtains and returns
a list of Alice’s transactions from the bank; a sketch of
the closure code is shown in Figure 5. The closure runs
with authority for both its bank tag and the all-user-data
tag. It adds the bank tag to the thread’s secrecy label,
opens the box to obtain the credentials, uses its authority
to declassify, and contacts the remote bank. When the
closure returns Alice’s transactions, its label is merged
with that of its caller, so the user’s tag, e.g., alice-data, is
restored to the label. Therefore, we need not be concerned
that Alice’s data will be exposed to some other user.

After obtaining information from all banks, the thread
computes the result. Since this involves invoking un-
trusted code – for example, an OFX parser or a graph-
drawing library – it does so using a reduced authority call
to Ppublic. Because the thread’s label contains the alice-
data tag, the called code can process her financial data
but cannot expose it over the network or store it in an
unlabeled file. When the reduced authority call returns,
the thread removes the alice-data tag from its secrecy
label and returns the result to Alice.

Discussion. Aeolus’ reduced authority calls and author-
ity closures make it convenient to run application com-
ponents with minimal authority, so only a small amount

public class BankClosure extends AeolusClosure {
private BankInfo bank;
private Tag bankTag; // the tag for this bank

public BankClosure(PID bankPID, Tag t, BankInfo b) {
super(bankPID); // binds the closure to bankPID
bankTag = t;
bank = b;
}

// this function runs with bankPID authority
public Transactions getTxns(Box<Credentials> u) {

addSecrecy(this.bankTag);
Credentials c = u.get()
declassify(this.bankTag);
declassify(c.userTag);
Transactions t = download(bank.url,

c.username, c.password);
return t;

}

}

Figure 5: Example of an authority closure

of application code needs to be trusted for security. For
example, to ensure the secrecy of a user’s bank password,
we need only trust the bank closure, as only it runs with
the authority to remove the bank’s tag. In previous DIFC
operating systems, dropping and regaining authority re-
quires use of a different process, which is more difficult to
program and imposes higher overhead – making it likely
that developers will not bother to do so.

The application also benefits from shared state since it
can cache data in memory rather than resorting to files.
Aeolus is the first DIFC system to support secure shared
state with labeled application-level objects. An applica-
tion running on an existing DIFC operating systems could
implement a “shared state manager” process that other
processes communicate with by IPC, but this is incon-
venient, expensive, and risky: that process needs to run
with complete authority because it is contaminated by the
content of all shared objects.

6 Implementation
This section describes some highlights of our Java-based
implementation of Aeolus. Further details, including the
complete interface, are available in the Aeolus reference
manual [1]. We also have implementations for C# and
PHP, but do not describe these here.

Figure 6 shows the structure of the implementation at
an Aeolus node. Aeolus runs on top of the JVM within
a single OS process, and all Aeolus applications on the
node run within the same JVM. The Aeolus runtime runs
a special thread (the authority state client) that manages
an authority state cache and handles interactions with the
authority state server (the AS) on behalf of all threads at
the node. Application code accesses Aeolus features via
a set of libraries. The AS runs on a separate machine.
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6.1 Threads and Isolation
All Aeolus threads on a node, even those belonging to
different virtual nodes, run within the same JVM. All
threads and shared state objects share a common heap.

Running all threads in the same JVM provides good
performance: for example, it allows us to support fast
shared state communication between threads. However,
each Aeolus thread must appear to have its own isolated
memory, and label checks must be interposed on accesses
to shared state and boxes. Aeolus achieves this isola-
tion goal by relying on the memory safety of the JVM:
each thread can access only the parts of the heap acces-
sible from its stack. Aeolus ensures that only one thread
can have a pointer to any object, except for encapsulated
shared objects.

Implementing Copy-Based Isolation. To ensure that
only one thread can have a pointer to a non-shared object,
objects must be copied before they can be passed to a new
thread. Similarly, arguments to and results from shared
object methods must be copied to prevent threads from
obtaining pointers to the contents of encapsulated shared
objects. These deep copies can be expensive; prior work
rejected copying entirely, citing prohibitive costs [12].
Aeolus uses a highly optimized, low-level cloning library
to reduce the cost of copying.

An important optimization is to avoid copying im-
mutable state, which can be safely shared. Aeolus recur-
sively analyzes classes at load time to determine whether
instances could contain mutable (non-final) fields or can
refer to any mutable objects via fields, superclasses, and
inner and outer classes. For the purposes of this analysis,
shared state objects are considered immutable; as we de-
scribe below, they are instrumented to perform runtime
label checks, so references to them can be shared.

Programmers can use the AeolusSafe marker interface
to indicate that a type is immutable. If an AeolusSafe
type contains or refers to mutable state, a load-time error
occurs. Aeolus can safely assume that all subtypes of an
AeolusSafe type are immutable. If a type is AeolusSafe

(or if it is immutable and final) then the instrumentation
to copy values of that type is omitted entirely.

Restrictions. Aeolus requires application code to use a
“safe” subset of Java, because certain Java features could
be used to circumvent isolation and the information flow
rules. Aeolus applications may not use:

• reflection and native code, which can bypass the
Java type system

• static variables, which could allow threads to share
state in ways that violate the information flow rules1

• direct access to underlying Java APIs for I/O and
threading; applications must use the Aeolus API

The restrictions are enforced through a combination
of load-time bytecode verification implemented with a
custom class loader, and runtime checks implemented
using Java’s SecurityManager framework. Our approach
to isolation is similar to that used by other systems that
run multiple applications in a single JVM [3, 12].

6.2 Shared Objects and Closures
The Aeolus class loader uses bytecode rewriting to make
shared objects and closures safe, convenient, and efficient.
Shared state objects and closures can provide any number
of public methods; the Aeolus class loader adds instru-
mentation to them to enforce the information flow rules.
Closure methods are instrumented to save the caller’s
labels and merge them into the thread labels on return.
Shared state objects are instrumented to perform the nec-
essary label checks, and also to copy arguments and re-
turn values of method and constructor calls (including
any thrown exception objects) if necessary to enforce
isolation.

Closure objects are required to be immutable (subtypes
of AeolusSafe). This prevents closures from keeping state
between calls and potentially leaking information to dif-
ferently labeled callers.

6.3 Management of Authority State
Authority state is stored in a transactional database at a
special authority server (AS). Each node runs an author-
ity state client, which sends all authority updates to the
AS. Updates are infrequent, and thus result in minimal
overhead, but queries over the authority state are com-
mon. The authority state client maintains a local cache of
authority state to reduce query latency and AS load.

When there is a miss in the authority cache, Aeolus
fetches a block of related information. Since the notion
of what is “related” depends on the application (e.g., if
we need information about a patient in a medical system,

1 We plan to remove this restriction in the future by providing private
versions of static variables for each thread. The technique is similar to
that proposed for Java’s as-yet-unavailable isolation API [3].



what other information is useful to know?), we provide a
way for applications to organize the state into blocks.

The cache needs to be managed properly to ensure that
it contains correct and timely information. When a block
is fetched, the cache also receives and applies all updates
that have occurred since its last communication with the
AS. This ensures that each query runs on a consistent
snapshot of the AS state. In addition, we provide causal-
ity by propagating information about the most recent AS
update at the sender in its messages; at the receiver, we
ensure that the next use of the cache reflects this update
or a later state. Finally we provide timeliness, which is
especially important for revocation. A cache stops pro-
cessing queries until it can communicate with the AS if its
update information is older than δ seconds; δ is a system
parameter and might be on the order of 30 seconds.

The Query Cache. Even if all necessary blocks are
present in the cache, determining whether a principal
has authority for a certain tag might be computationally
expensive if the application has a complex authority state.
To avoid this overhead, we also maintain a query cache,
which stores the results of recent queries. The query cache
contains a set of pairs; each indicating that a particular
principal has authority for a specific tag, or acts for a
specific other principal.

When a client receives updates from the AS, it removes
all query cache entries computed from information in
blocks that have changed. This approach reduces the
metadata needed for each query-cache entry (we store
information about blocks rather than specific delegation
links) but can lead to unnecessary evictions.

7 Evaluation: Performance
This section demonstrates that a large application run-
ning on Aeolus performs about as well as an application
running on pure Java that does an equivalent amount of
work. We first examine the end-to-end performance of
an implementation of the financial management service
from Section 5.3, and show that the overhead of adding
information flow control with Aeolus is minuscule. To
gain further insight into this result, we then explore the
sources of overhead, via microbenchmarks.

A key contributor to Aeolus’s low overhead is that it
tracks information flows at the level of threads, relying
on memory safety for isolation. Therefore, protection
boundary crossings are much cheaper than in information
flow systems that rely on OS processes for isolation [6, 9,
23]. Furthermore, execution is cheaper than in systems
that do finer-grained tracking [16, 22] because Aeolus
interposes only on communication and not on individual
memory accesses. Some of our optimizations, particularly
authority query caching, fast copies, and immutability
analysis, also contribute substantially to our performance

results.
These experiments use our Java implementation of

Aeolus on a 2.50 GHz Core 2 Quad system with 4 GB of
RAM, running Ubuntu 11.04 with Linux kernel 2.6.38-10.
Our Aeolus libraries ran atop the OpenJDK 1.7.0 1 JVM.

7.1 End-to-End Performance
The evaluation of the financial management service pro-
totype is interesting because it tests the performance of a
wide range of Aeolus features: the code does label manip-
ulations, makes use of shared state, and uses both author-
ity closures and reduced authority calls. The prototype
operates as a single virtual node that receives requests
from users, fetches their user information, and retrieves fi-
nancial data using bank closures. In the experiment, each
user has three banks, and we use ten threads to handle
user requests (i.e., we can run ten requests at a time). Each
bank closure establishes an SSL connection to a user’s
bank, downloads the user’s bank statement in OFX for-
mat, and returns the result; lacking real banks to test with,
we simulate the network delay by sleeping for 100 ms.
When all bank information has arrived, the thread gener-
ates a graph of spending habits, using a reduced authority
call.

We compared the average request processing time
for the implementation of this benchmark to one that
does not use Aeolus or DIFC. The Aeolus version re-
quired 323.9 ms processing per request, 0.15% greater
than the 323.5 ms processing time for the native version.
There was a corresponding decrease in throughput from
17.97 req/s to 17.61 req/s. We observed similar overhead
when varying the amount of time taken to process finan-
cial information retrieved from each bank.

7.2 Microbenchmarks
Applications running on Aeolus have low overhead, as
shown above, because they invoke security operations
relatively infrequently and mostly do real work. Neverthe-
less, it is worthwhile to examine the sources of overhead.

Shared State and Copying. Aeolus must check the
caller’s labels on each call to a method of a shared state
object, but this overhead is negligible because labels are
small (typically they contain one tag), making shared
state a viable option for communication between threads.
A trivial call with an empty label and no arguments or
return value costs 8.9 ns.

The cost of copying arguments and return values of
shared state methods is more significant, however. As
discussed in Section 6.1, Aeolus avoids copying these
objects if they are immutable; it takes 13 ns to make
this determination by looking up the object’s type in a
hash table. If a formal parameter to a method is known
to be immutable at load time (i.e., it is a primitive type, a



Operation Time (ns)

Reduced authority call to Ppublic 7.7
Reduced authority call to Px 51
Closure call 83
Java method call 4.0

Figure 7: Time to perform a reduced authority call or
invoke a closure. The cost of an ordinary Java method
call is provided for comparison.

final and immutable class, or a shared or AeolusSafe ob-
ject), then the copying instrumentation is omitted entirely,
reducing the overhead for that argument to zero.

For objects that must be copied, Aeolus uses a fast,
low-level mechanism that takes about 93 ns to duplicate
an object, plus the time to recursively duplicate its fields.
This offers significantly greater performance than the typi-
cal implementation of cloning, which serializes the object
into a buffer and then deserializes the buffer; this naive
approach takes 6.3 µs to copy an empty object, much of it
spent on needless validity checks. Most complex objects
contain at least some state that is immutable, e.g., Strings,
so our optimization of avoiding copies of these fields is
also significant.

We found that copying array elements was particu-
larly slow (200 ns). Arrays of immutable elements (such
as bytes, integers, or Strings) are common, so we made
them a special case. Using System.arraycopy reduced
the per-element copying cost to 1.5 ns for an array of
immutable objects.

Closure and Reduced Authority Calls. The table in
Figure 7 shows the overhead involved in performing re-
duced authority calls and closure calls when the process
label is empty and there are no arguments or results. Calls
to Ppublic incur less overhead because they need not check
authority state.

Forks. Aeolus can fork a new thread running with dif-
ferent authority and start running in the new thread in
12 µs. Tracking security state and enforcing isolation
adds a small overhead relative to the 4.7 µs it takes to
start a thread in Java. (Thread pools are used as an opti-
mization in both cases.) Because Aeolus implements iso-
lation using threads, these figures are much smaller than
the cost to fork an OS process, the equivalent operation
in a DIFC operating system. For comparison, creating
a new OS-level process on the same machine requires
135 µs.

Authority Management. Aeolus adds overhead in the
management of authority state. In particular, a thread can
only perform a declassification or endorsement on a tag if
its principal has authority for that tag. In applications with
complex authority structure, checking this may require
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traversing a number of delegation links.
Our use of a two-level cache mitigates this cost. Fig-

ure 8 shows the average request latency for an authority
check, with varying delegation chain lengths. Depending
on the length of the chain, it takes 0.7 to 4.2 ms to fetch
the relevant state from the authority server to answer a
query. If the state is already in the block cache, the an-
swer can be computed locally in 1 to 10 µs. If the answer
is in the query cache, it takes only 37 ns, regardless of
the length of delegation chains. Here, the authority server
is located on the same local network as the client. In
a wider-area deployment, latency for uncached requests
would be higher and the cache’s benefit would be even
greater.

File I/O. Aeolus must interpose on accesses to the file
system to enforce information flow control. Because it
must load and check the file’s label, Aeolus imposes an
additional cost of 400 µs on the first read to a particular
file. Subsequent requests are cached.

8 Related Work
Aeolus builds on work on DIFC in programming lan-
guages and operating systems, fusing the concepts devel-
oped in these two areas into a new high-level model. It
also provides new mechanisms not found in other sys-
tems, such as closures, boxes, and shared volatile state.

8.1 Programming Languages
Jif [14, 15] introduced the DIFC model, which formed
the basis for many subsequent systems, including Aeolus.
Jif embeds information flow policies in labels and makes
labels part of the type system; programs that violate the
information flow rules are rejected by the compiler. Jif
also supports certain kinds of dynamic policies. Aeolus,
in contrast, does all label checks at runtime and does not
require type annotations.

Some language-based approaches [2, 19, 20] use the
concept of a dynamic principal hierarchy to specify se-
curity policies, and support precise fine-grained declassi-
fication. Aeolus’s principal hierarchy draws inspiration



from this work. However, tags allow us to group objects
with the same security policy in a more convenient way
than is possible in the type-system-based approaches. Our
model also operates at a coarser granularity, allowing pro-
grammers to focus on the privileges required for different
modules of an application, rather than the sensitivity of
individual variables and objects.

Fabric [10] adds trust relationships to the principal
hierarchy, supporting federated systems with mutually
distrustful nodes. Aeolus assumes all nodes in a deploy-
ment are trusted, but could be extended to use this ap-
proach. Fabric nodes cache the transitive closure of all
the acts-for links they know about; similarly, Aeolus’s
query cache stores edges in the transitive closure of the
authority graph, but Aeolus doesn’t precompute the entire
transitive closure.

Another significant difference between Aeolus and pre-
vious language-based approaches is that Aeolus does not
require applications to be written in a new language, nor
does it require special compiler support.

8.2 Operating Systems
DIFC-based operating systems expose information flow
controls to the applications via the operating system API.
Asbestos [6] and HiStar [23] are new operating systems
that provide DIFC properties using labels and tags. As-
bestos tracks information flow at the level of processes
exchanging unreliable messages; HiStar acts at the mi-
crokernel level of threads, memory segments, and gates
(which are somewhat like our authority closures).

Aeolus borrows the notion of tags and labels from this
recent work. However, labels in Asbestos and HiStar com-
bine mechanisms for privacy, integrity, authentication, de-
classification privilege, and access control. Flume [9], like
Aeolus, separates information flow labels from authority
and access control to make labels easier to understand.
Also like Aeolus, Flume runs in user mode on a standard
OS. However, Aeolus differs from Flume because it uses
an explicit principal hierarchy rather than capabilities.

Aeolus also exposes higher-level abstractions to the
application, such as closures and boxes. Whereas As-
bestos, HiStar, and Flume require separate processes for
privilege separation, Aeolus’s abstractions make defining
trust boundaries within an application easier and more
efficient.

Among these systems, only HiStar provides support for
shared memory, by exposing low-level page table protec-
tion mechanisms. Aeolus provides more usable sharing
at the level of objects applications use. Laminar [16] also
aims to provide sharing of application objects, using a
hybrid of OS and JVM mechanisms. Laminar tracks in-
formation flow at object granularity; however, because
fine-grained dynamic tracking is expensive, it only tracks
contamination within code blocks called security regions.

It does not track contamination outside these regions,
making it hard to enforce end-to-end security guarantees.

DStar [24] extends HiStar over the network and is the
only DIFC system that provides support for revocation.
It does this by requiring authorizations to be refreshed
periodically. Aeolus uses a similar technique internally
but provides a more convenient abstraction to users.

Aeolus applications enforce discretionary information
flow policies through carefully controlled use of author-
ity – a notion programmers are familiar with. Other sys-
tems have explored alternatives such as data-flow asser-
tions [22] and special-purpose policy specification lan-
guages [5].

The Singularity operating system [7], while not an in-
formation flow system, supports language-based isolation
like Aeolus. Singularity provides fast IPC via hand-off:
threads can exchange shared objects, but at most one
thread can have a reference to a given shared object at
any time. In contrast, Aeolus shared objects can be ac-
cessed by many threads concurrently, and Aeolus uses
copying to prevent direct references from crossing the
boundary between threads and shared objects.

9 Conclusions and Future Work
Aeolus is a new distributed platform for developing and
deploying secure applications using DIFC. It provides a
new security model based on tags and a principal hierar-
chy, which allows fine-grained delegation and revocation
of authority. Recording trust relationships in a principal
hierarchy makes it possible to define policy constraints.

Aeolus provides abstractions to make writing secure
applications easier. Authority closures and reduced au-
thority calls support the principle of least privilege. In
addition, Aeolus supports distributed and concurrent pro-
grams, providing boxes to limit contamination, IPC, and
shared state to allow convenient yet safe use of shared
volatile information.

We implemented Aeolus in Java, and used it to develop
several applications. Aeolus’s features made expressing
the desired information flow constraints convenient. Our
experiments show that Aeolus has good performance,
and its approach for caching authority state is effective.
An initial release of the system can be downloaded from
http://pmg.csail.mit.edu/aeolus/.

We are investigating programming language exten-
sions to make Aeolus even more convenient. For example,
it would be useful to have a syntactic extension for run-
ning blocks of code with reduced authority, eliminating
the need to make reduced authority calls to separate meth-
ods. Also, if it were possible to recognize that a method on
a shared object did not perform any mutation operations,
either directly or indirectly, we could allow user-defined
shared objects with relaxed label restrictions; presently,
Aeolus conservatively assumes that shared object meth-

http://pmg.csail.mit.edu/aeolus/


ods both read and write the object.
Additionally, we are currently extending the system

with support for secure audit trails, and we are developing
an approach to integrate databases into the model in a
flexible way.
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